Model-Based Combustion Duration and Ignition Timing Prediction for Combustion Phasing Control of a Spark-Ignition Engine Using In-Cylinder Pressure Sensors

Author(s):  
Xin Wang ◽  
Amir Khameneian ◽  
Paul Dice ◽  
Bo Chen ◽  
Mahdi Shahbakhti ◽  
...  

Abstract Combustion phasing, which can be defined as the crank angle of fifty percent mass fraction burned (CA50), is one of the most important parameters affecting engine efficiency, torque output, and emissions. In homogeneous spark-ignition (SI) engines, ignition timing control algorithms are typically map-based with several multipliers, which requires significant calibration efforts. This work presents a framework of model-based ignition timing prediction using a computationally efficient control-oriented combustion model for the purpose of real-time combustion phasing control. Burn duration from ignition timing to CA50 (ΔθIGN-CA50) on an individual cylinder cycle-by-cycle basis is predicted by the combustion model developed in this work. The model is based on the physics of turbulent flame propagation in SI engines and contains the most important control parameters, including ignition timing, variable valve timing, air-fuel ratio, and engine load mostly affected by combination of the throttle opening position and the previous three parameters. With 64 test points used for model calibration, the developed combustion model is shown to cover wide engine operating conditions, thereby significantly reducing the calibration effort. A Root Mean Square Error (RMSE) of 1.7 Crank Angle Degrees (CAD) and correlation coefficient (R2) of 0.95 illustrates the accuracy of the calibrated model. On-road vehicle testing data is used to evaluate the performance of the developed model-based burn duration and ignition timing algorithm. When comparing the model predicted burn duration and ignition timing with experimental data, 83% of the prediction error falls within ±3 CAD.

Author(s):  
Xin Wang ◽  
Amir Khameneian ◽  
Paul Dice ◽  
Bo Chen ◽  
Mahdi Shahbakhti ◽  
...  

Abstract In homogeneous spark-ignition (SI) engines, ignition timing is used to control the combustion phasing (crank angle of fifty percent of fuel burned, CA50), which affects fuel economy, engine torque output, and emissions. This paper presents a model-based adaptive ignition timing prediction strategy using a control-oriented dynamic combustion model for real-time closed-loop combustion phasing control. The combustion model predicts the burn duration from ignition timing to CA50 (ΔθIGN-CA50) at Intake Valve Closing (IVC) for the upcoming cycle based on current engine operating conditions, including variable valve timing, predicted ignition timing, air-fuel ratio, engine speed, and engine load. To maintain the accuracy of combustion model and ignition timing prediction during the engine lifetime, a Recursive-Least-Square (RLS) with Variable Forgetting Factor (VFF) based adaptation algorithm is developed to handle both short term (operating-point-dependent) and long term (engine aging) model errors. Due to short term model errors and stochastic characteristics of cycle-to-cycle combustion variations, large model errors may occur during severe transient operating conditions (tip-in/tip-out), which can result in wrong adjustments and excessive adaptations. Since on-road SI engines are always operating in transient conditions, the ‘Heavy Transient Detection’ algorithm is developed to avoid fault adaptation and assist the adaptation algorithm to be stable. On-road vehicle testing data is used to evaluate the performance of the entire model-based adaptive burn duration and ignition timing prediction algorithm. With only 64 calibration points, a mean ignition timing prediction error of 0.2 Crank Angle Degree (CAD) and average iteration number of 2 shows the capability of adaptive ignition timing prediction, a significant reduction of calibration efforts, and potential of real-time application of the developed adaptive ignition timing prediction algorithm.


2002 ◽  
Vol 30 (4) ◽  
pp. 283-297 ◽  
Author(s):  
Jerald A. Caton

The development and use of an instructional version of a thermodynamic engine cycle simulation for classroom use is described. This simulation is based on well-established features, but which are not necessarily the most advanced. The major simplification of this instructional simulation is the use of constant specific heat capacities as opposed to the use of variable composition and properties. The cycle simulation was developed with an elementary set of conventional sub-model components. To account for the unsteady flow dynamics, an empirical adjustment factor was used. With the exception of this empirical adjustment factor, all of the constants associated with the sub-models are used as suggested by the original publications. Students, therefore, are readily able to develop and use this simulation. This paper then demonstrates the usefulness of such a basic simulation in describing the overall performance of a commercial automotive spark-ignition engine for a range of engine speeds and operating conditions. A modern, four-valve per cylinder, two-camshaft engine was selected for this study. Although the cycle simulation was based on elementary conventional features, a number of important engine characteristics were correctly obtained. These included the overall performance for engine speeds up to 7000 rpm, and details such as the time (crank angle) of peak pressure for optimum performance.


2019 ◽  
Vol 22 (1) ◽  
pp. 109-124 ◽  
Author(s):  
Ruixue C Li ◽  
Guoming G Zhu ◽  
Yifan Men

This article presents a control-oriented two-zone reaction-based zero-dimensional model to accurately describe the combustion process of a spark-ignited engine for real-time simulations, and the developed model will be used for model-based control design and validation. A two-zone modeling approach is adopted, where the combustion chamber is divided into the burned (reaction) and unburned (pre-mixed) zones. The mixture thermodynamic properties and individual chemical species in two zones are taken into account in the modeling process. Instead of using the conventional pre-determined Wiebe-based combustion model, a two-step chemical reaction model is utilized to predict the combustion process along with important thermodynamic parameters such as the mass-fraction-burned, in-cylinder pressure, temperatures, and individual species mass changes in both zones. Sensitivities of model parameters are analyzed during the model calibration process. As a result, one set of calibration parameters is used to predict combustion characteristics over all engine operating conditions studied in this article, which is the major advantage of the proposed method. Also, the proposed modeling approach is capable of modeling the combustion process under different air-to-fuel ratios, ignition timings, and exhaust-gas-recirculation rates for real-time simulations. As the by-product of the model, engine knock can also be predicted based on the Arrhenius integral in the unburned zone, which is valuable for model-based knock control. The proposed combustion model is intensively validated using the experimental data with a peak relative prediction error of 6.2% for the in-cylinder pressure.


2003 ◽  
Vol 4 (3) ◽  
pp. 179-192 ◽  
Author(s):  
L Andreassi ◽  
S Cordiner ◽  
V Rocco

The evolution of early stages of homogeneous mixture combustion in spark ignition (SI) engines represents a critical period that greatly affects the whole combustion process. A proper description of this critical phase represents a major issue, which could strongly influence the overall model predictive capability (i.e. model ability to reproduce the real engine behaviour for a large range of operating conditions without any major tuning). Such requirements become even more important for the simulation of last-generation gasoline direct injection or lean stratified engines, where ignition could determine the functionality of the engine itself. In this paper, after a detailed analysis of the ignition physical process and its modelling issues, the predictive capability of the KIVA-3V code has been improved by substituting the original ignition procedure with a more detailed kernel evolution model based on the one presented by Herweg and Maly in 1992. The ignition model introduced in a KIVA-3V version already modified by the authors (re-zoning algorithm, combustion and turbulence models, cylinder wall heat transfer, etc.) has then been tested in order to assess its level of accuracy in describing this complex phenomenon, by varying the most critical engine operating conditions and keeping combustion tuning parameters unchanged. After comparing ignition model results with the corresponding ones presented by Herweg and Maly, a specific application of the overall model (KIVA-3V + ignition model + turbulent combustion model) has been made to perform an analysis of a compressed natural gas (CNG) fuelled engine for heavy-duty applications. To this aim, the in-cylinder combustion history and the related processes as the temperature distribution and NOx formation have been calculated and verified with reference to the experimental data measured in a wide range of operating conditions of an IVECO turbocharged engine.


Author(s):  
M. S. Shehata

Abstract Experimental studies have been carried out for investigating engine performance parameters, cylinder pressure, emissions and engine thermal balance of spark ignition engine (S.I.E.) using either gasoline or Liquefied Petroleum Gases (LPG) as a fuel at maximum brake torque (MBT) ignition timing. MBT ignition timing for LPG is found to be 2 to 10 degrees crank angle more advance than for gasoline. Maximum cylinder pressure locations for gasoline and LPG are shifted towards top dead center (TDC) with increase engine speed. At low engine speed, maximum cylinder pressure for gasoline fuel is higher than for LPG fuel. At high engine speeds maximum cylinder pressure for LPG is nearly the same as for gasoline. Maximum pressure for ignition timing 35 crank angle (CA) before top dead center (BTDC) is greater than for 45 and 25 CA respectively. Engine produces more brake power with gasoline than with LPG. Engine brake thermal efficiency (ηbth) and volumetric efficiency (ηv) with LPG is less than for gasoline. When S.I.E converted from gasoline to LPG the loss in maximum power is nearly 14% and the loss in maximum efficiency is nearly 8%. UHC and CO concentrations for LPG are nearly one-tenth of that produced by gasoline at the same ignition timing and the same engine speed. For low engine speed exhaust and oil temperatures for gasoline and LPG increase with increase engine speed but for high engine speed exhaust and oil temperature decreases with increase engine speed. For gasoline and LPG cooling water temperature decreases with increase engine speed. Lubricating oil and cooling water temperatures for gasoline and LPG increase with increase ignition timing BTDC but exhaust gas temperature decreases with increase ignition timing. LPG has higher exhausted gas temperature than gasoline but gasoline has higher oil temperature than LPG. At different ignition timing exhaust loss for LPG is greater than for gasoline but cooling water loss for gasoline is greater than for LPG.


2008 ◽  
Author(s):  
Dongkyu Lee ◽  
Insuk Han ◽  
Kang Y. Huh ◽  
Je-Hyung Lee ◽  
Sung-Jun Kim ◽  
...  

Author(s):  
V. Matham ◽  
K. Majmudar ◽  
K. Aung

The use of alternative fuels such as natural gas (methane) in spark-ignition (SI) engines is beneficial to the environment as it reduces emissions of pollutants such as NOx from these engines with slight penalty on the performance. This paper investigated the use of methane and hydrogen/methane mixtures in an SI engine by numerical simulations. The numerical simulations were based on the models of finite heat release, cylinder heat transfer, pumping losses, and friction losses. Simulations were carried out to evaluate the effects of compression ratio, equivalence ratio, ignition timing, and engine speed on the performance of the SI engine. The results showed that the current model could satisfactorily predict the performance of an SI engine fueled by gaseous fuels.


Sign in / Sign up

Export Citation Format

Share Document