A New Combustion Model Based on Transport of Mean Reaction Progress Variable in a Spark Ignition Engine

Author(s):  
Dongkyu Lee ◽  
Insuk Han ◽  
Kang Y. Huh ◽  
Je-Hyung Lee ◽  
Sung-Jun Kim ◽  
...  
Author(s):  
Xin Wang ◽  
Amir Khameneian ◽  
Paul Dice ◽  
Bo Chen ◽  
Mahdi Shahbakhti ◽  
...  

Abstract Combustion phasing, which can be defined as the crank angle of fifty percent mass fraction burned (CA50), is one of the most important parameters affecting engine efficiency, torque output, and emissions. In homogeneous spark-ignition (SI) engines, ignition timing control algorithms are typically map-based with several multipliers, which requires significant calibration efforts. This work presents a framework of model-based ignition timing prediction using a computationally efficient control-oriented combustion model for the purpose of real-time combustion phasing control. Burn duration from ignition timing to CA50 (ΔθIGN-CA50) on an individual cylinder cycle-by-cycle basis is predicted by the combustion model developed in this work. The model is based on the physics of turbulent flame propagation in SI engines and contains the most important control parameters, including ignition timing, variable valve timing, air-fuel ratio, and engine load mostly affected by combination of the throttle opening position and the previous three parameters. With 64 test points used for model calibration, the developed combustion model is shown to cover wide engine operating conditions, thereby significantly reducing the calibration effort. A Root Mean Square Error (RMSE) of 1.7 Crank Angle Degrees (CAD) and correlation coefficient (R2) of 0.95 illustrates the accuracy of the calibrated model. On-road vehicle testing data is used to evaluate the performance of the developed model-based burn duration and ignition timing algorithm. When comparing the model predicted burn duration and ignition timing with experimental data, 83% of the prediction error falls within ±3 CAD.


Fuel ◽  
2021 ◽  
Vol 303 ◽  
pp. 121281
Author(s):  
Amin Paykani ◽  
Christos E. Frouzakis ◽  
Christian Schürch ◽  
Federico Perini ◽  
Konstantinos Boulouchos

2021 ◽  
Vol 11 (4) ◽  
pp. 1441
Author(s):  
Farhad Salek ◽  
Meisam Babaie ◽  
Amin Shakeri ◽  
Seyed Vahid Hosseini ◽  
Timothy Bodisco ◽  
...  

This study aims to investigate the effect of the port injection of ammonia on performance, knock and NOx emission across a range of engine speeds in a gasoline/ethanol dual-fuel engine. An experimentally validated numerical model of a naturally aspirated spark-ignition (SI) engine was developed in AVL BOOST for the purpose of this investigation. The vibe two zone combustion model, which is widely used for the mathematical modeling of spark-ignition engines is employed for the numerical analysis of the combustion process. A significant reduction of ~50% in NOx emissions was observed across the engine speed range. However, the port injection of ammonia imposed some negative impacts on engine equivalent BSFC, CO and HC emissions, increasing these parameters by 3%, 30% and 21%, respectively, at the 10% ammonia injection ratio. Additionally, the minimum octane number of primary fuel required to prevent knock was reduced by up to 3.6% by adding ammonia between 5 and 10%. All in all, the injection of ammonia inside a bio-fueled engine could make it robust and produce less NOx, while having some undesirable effects on BSFC, CO and HC emissions.


Author(s):  
Y. See ◽  
M. Wang ◽  
J. Bohbot ◽  
O. Colin

Abstract The Species-Based Extended Coherent Flamelet Model (SB-ECFM) was developed and previously validated for 3D Reynolds-Averaged Navier-Stokes (RANS) modeling of a spark-ignited gasoline direct injection engine. In this work, we seek to extend the SB-ECFM model to the large eddy simulation (LES) framework and validate the model in a homogeneous charge spark-ignited engine. In the SB-ECFM, which is a recently developed improvement of the ECFM, the progress variable is defined as a function of real species instead of tracer species. This adjustment alleviates discrepancies that may arise when the numerical treatment of real species is different than that of the tracer species. Furthermore, the species-based formulation also allows for the use of second-order numeric, which can be necessary in LES cases. The transparent combustion chamber (TCC) engine is the configuration used here for validating the SB-ECFM. It has been extensively characterized with detailed experimental measurements and the data are widely available for model benchmarking. Moreover, several of the boundary conditions leading to the engine are also measured experimentally. These measurements are used in the corresponding computational setup of LES calculations with SB-ECFM. Since the engine is spark ignited, the Imposed Stretch Spark Ignition Model (ISSIM) is utilized to model this physical process. The mesh for the current study is based on a configuration that has been validated in a previous LES study of the corresponding motored setup of the TCC engine. However, this mesh was constructed without considering the additional cells needed to sufficiently resolve the flame for the fired case. Thus, it is enhanced with value-based Adaptive Mesh Refinement (AMR) on the progress variable to better capture the flame front in the fired case. As one facet of model validation, the ensemble average of the measured cylinder pressure is compared against the LES/SB-ECFM prediction. Secondly, the predicted cycle-to-cycle variation by LES is compared with the variation measured in the experimental setup. To this end, the LES computation is required to span a sufficient number of engine cycles to provide statistical convergence to evaluate the coefficient of variation (COV) in peak cylinder pressure. Due to the higher computational cost of LES, the runtime required to compute a sufficient number of engine cycles sequentially can be intractable. The concurrent perturbation method (CPM) is deployed in this study to obtain the required number of cycles in a reasonable time frame. Lastly, previous numerical and experimental analyses of the TCC engine have shown that the flow dynamics at the time of ignition is correlated with the cycle-to-cycle variability. Hence, similar analysis is performed on the current simulation results to determine if this correlation effect is well-captured by the current modeling approach.


2020 ◽  
Vol 10 (24) ◽  
pp. 8979
Author(s):  
Andrea Matrisciano ◽  
Tim Franken ◽  
Laura Catalina Gonzales Mestre ◽  
Anders Borg ◽  
Fabian Mauss

The use of chemical kinetic mechanisms in computer aided engineering tools for internal combustion engine simulations is of high importance for studying and predicting pollutant formation of conventional and alternative fuels. However, usage of complex reaction schemes is accompanied by high computational cost in 0-D, 1-D and 3-D computational fluid dynamics frameworks. The present work aims to address this challenge and allow broader deployment of detailed chemistry-based simulations, such as in multi-objective engine optimization campaigns. A fast-running tabulated chemistry solver coupled to a 0-D probability density function-based approach for the modelling of compression and spark ignition engine combustion is proposed. A stochastic reactor engine model has been extended with a progress variable-based framework, allowing the use of pre-calculated auto-ignition tables instead of solving the chemical reactions on-the-fly. As a first validation step, the tabulated chemistry-based solver is assessed against the online chemistry solver under constant pressure reactor conditions. Secondly, performance and accuracy targets of the progress variable-based solver are verified using stochastic reactor models under compression and spark ignition engine conditions. Detailed multicomponent mechanisms comprising up to 475 species are employed in both the tabulated and online chemistry simulation campaigns. The proposed progress variable-based solver proved to be in good agreement with the detailed online chemistry one in terms of combustion performance as well as engine-out emission predictions (CO, CO2, NO and unburned hydrocarbons). Concerning computational performances, the newly proposed solver delivers remarkable speed-ups (up to four orders of magnitude) when compared to the online chemistry simulations. In turn, the new solver allows the stochastic reactor model to be computationally competitive with much lower order modeling approaches (i.e., Vibe-based models). It also makes the stochastic reactor model a feasible computer aided engineering framework of choice for multi-objective engine optimization campaigns.


1977 ◽  
Vol 191 (1) ◽  
pp. 339-354 ◽  
Author(s):  
R. S. Benson ◽  
P. C. Baruah

A comparison is made of experimental results and predictions of performance and emissions from a multi-cylinder spark ignition engine over a range of air-fuel ratios and two throttle settings. The results showed that a simplified two zone combustion model, a seven reaction scheme for nitric oxide formation, a partial freezing model for carbon monoxide and the inclusion of chemical reactions and variable specific heat along the pathlines in the wave equations gave good agreement with the measurements at the common pipe junction and exhaust outlet, but due to cyclic dispersion and maldistribution of fuel between cylinders the predictions of the emissions in the exhaust manifold adjacent to the cylinder were not so good. The predicted air flow and indicated power agreed well with experiment.


Author(s):  
Xiaojian Yang ◽  
Guoming G Zhu

To implement the homogeneous charge compression ignition combustion mode in a spark ignition engine, it is necessary to have smooth mode transition between the spark ignition and homogeneous charge compression ignition combustions. The spark ignition–homogeneous charge compression ignition hybrid combustion mode modeled in this paper describes the combustion mode that starts with the spark ignition combustion and ends with the homogeneous charge compression ignition combustion. The main motivation of studying the hybrid combustion mode is that the percentage of the homogeneous charge compression ignition combustion is a good parameter for combustion mode transition control when the hybrid combustion mode is used during the transition. This paper presents a control oriented model of the spark ignition–homogeneous charge compression ignition hybrid combustion mode, where the spark ignition combustion phase is modeled under the two-zone assumption and the homogeneous charge compression ignition combustion phase under the one-zone assumption. Note that the spark ignition and homogeneous charge compression ignition combustions are special cases in this combustion model. The developed model is capable of simulating engine combustion over the entire operating range, and it was implemented in a real-time hardware-in-the-loop simulation environment. The simulation results were compared with those of the corresponding GT-Power model, and good correlations were found for both spark ignition and homogeneous charge compression ignition combustions.


Sign in / Sign up

Export Citation Format

Share Document