Structural Design Exploration for Product Architecture Design

Author(s):  
Masato Toi ◽  
Yutaka Nomaguchi ◽  
Kikuo Fujita

Abstract This paper proposed a design support method based on structuralization and analysis of various design candidates of product architecture design. The product architecture is a basic scheme that assigns the function of the product to physical components. In the conventional modular design method, a concise model, i.e., a graph or a matrix, is used to express the interactions of the system’s components and aims to support the designer grasping the system behavior. The Design Structure Matrix (DSM) is a representative model of system architecture and enables quantitative evaluation of design candidates. While various design candidates are generated through mathematical operations, it is difficult to understand their relationships from simple comparisons because of discrete behavior and the size of the problem. It must be a critical issue at the stage of selecting and interpreting the design candidates. In the proposed method, the design candidates are classified and structuralized as a dendrogram by the hierarchical clustering method. The comparison of clusters of each branch of dendrogram clarifies the system leverage points. The information of the system is summarized into the hierarchical tree-shaped graph that corresponds to the dendrogram. The designer can explore the design candidates with such a graph-based based interpretation of underlying structures effectively.


2002 ◽  
Vol 10 (2) ◽  
pp. 153-164 ◽  
Author(s):  
J. C. Sand ◽  
P. Gu ◽  
G. Watson

Product modularization aims to improve the overall design, manufacturing, operational, and post-retirement characteristics of products by designing or redesigning the product architectures. A successful modular product can assist the reconfiguration of products, while reducing the lead-time of design and manufacturing and improving the ability for upgrading, maintenance, customization and recycling. This paper presents a new modular design method called the House Of Modular Enhancement (HOME) for product redesign. Information from various aspects of the product design, including functional requirements, product architecture and life cycle requirements, is incorporated in the method to help ensure that a modularized product would achieve the objectives. The HOME method has been implemented in a software system. A case study will be presented to illustrate the HOME method and the software.





2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Xin Wang ◽  
Bo Luo

The development of customized service is an important way to transform and upgrade China’s mining industry. However, in practice, there remain problems, such as the slow market response speed of service providers and the contradiction between the large-scale development of service providers and the personalized service needs of service demanders. This paper uses the theory and method of service modular design to solve these problems and explores the process-based service modular design method. Service modular design depends largely on the determination of the relationship between service activities and the reasonable division of modules. However, previous research has rarely made use of modular design methods and modeling tools in the mining service context. At the same time, evaluations of the relationship between service activities relying on knowledge and those relying on experience have been inconclusive. Therefore, this paper proposes a service modularization design method based on the fuzzy relation analysis of a design structure matrix (DSM) that solves the optimal module partition scheme. Triangular fuzzy number and fuzzy evidence theory are used to evaluate and fuse the multidimensional and heterogeneous relationship between service activities, and the quantitative processing of the comprehensive relationship between service activities is carried out. On this basis, the service module structure is divided, followed by the construction of the mathematical programming model with the maximum sum of the average cohesion degree in the module and the average coupling degree between modules as the driving goal. The genetic algorithm is used to solve the problem, and the optimal module division result is obtained. Finally, taking the service modular design of SHD coal production enterprises in China as an example, the feasibility of the proposed method is verified.



Author(s):  
J. Sand ◽  
P. Gu ◽  
G. Watson

Abstract Product modularization aims to improve the overall design, manufacturing, operational, and post-retirement characteristics of products by designing or redesigning the product architectures. A successful modular product can assist the reconfiguration of products, while reducing the lead time of design and manufacturing and improving the ability for upgrading, maintenance, customization and recycling. This paper presents a new modular design method called the House Of Modular Enhancement (HOME) for product redesign. Information from various aspects of the product design, including functional requirements, product architecture and life cycle requirements, is incorporated in the method to help ensure that a modularized product would achieve the objectives. The HOME method has been implemented in a software system. A case study will be presented to illustrate the HOME method and the software.



2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110343
Author(s):  
Mei Yang ◽  
Yimin Xia ◽  
Lianhui Jia ◽  
Dujuan Wang ◽  
Zhiyong Ji

Modular design, Axiomatic design (AD) and Theory of inventive problem solving (TRIZ) have been increasingly popularized in concept design of modern mechanical product. Each method has their own advantages and drawbacks. The benefit of modular design is reducing the product design period, and AD has the capability of problem analysis, while TRIZ’s expertise is innovative idea generation. According to the complementarity of these three approaches, an innovative and systematic methodology is proposed to design big complex mechanical system. Firstly, the module partition is executed based on scenario decomposition. Then, the behavior attributes of modules are listed to find the design contradiction, including motion form, spatial constraints, and performance requirements. TRIZ tools are employed to deal with the contradictions between behavior attributes. The decomposition and mapping of functional requirements and design parameters are carried out to construct the structural hierarchy of each module. Then, modules are integrated considering the connections between each other. Finally, the operation steps in application scenario are designed in temporal and spatial dimensions. Design of cutter changing robot for shield tunneling machine is taken as an example to validate the feasibility and effectiveness of the proposed method.



2021 ◽  
Vol 306 ◽  
pp. 127108
Author(s):  
Md Sanowar Hossain ◽  
Ripon K. Chakrabortty ◽  
Sondoss El Sawah ◽  
Michael J. Ryan




2014 ◽  
Vol 716-717 ◽  
pp. 1518-1521
Author(s):  
Shu Fang ◽  
Yan Xu ◽  
Fei Dong

The manufacture of fire robot has characteristics such as different types and piece production, and flexible manufacture and cost control of the fire robot must be considered due to these characteristics. In this paper, the similarity of fire robot’s working environment was analyzed, The demand of chassis’s adaptability and the method using general technical platform were discussed with the thinking of modular design, and new series fire robots which composed of the general platform and different function modules were proposed, and the manufacture cost of traditional design method and modular design method were compared in using the activity-based costing method, and under the new design method the manufacture cost were decreased extremely.



2014 ◽  
Vol 1049-1050 ◽  
pp. 828-832
Author(s):  
J.R. Yang

The aim of this study was to obtain the method of the green design and modular design that oriented construction machinery products. A variety of modern design tools such as the finite element analysis software package and optimize design package and a two-factor evaluation fuzzy modelare used to analyze and Evaluation the green degree and the module degree of the construction machinery. Some modern mathematical tools such as AHP and fuzzy comprehensive evaluation method are used to calculate and evaluate the green degree and the module degree in construction machinery design. The proposed design method can meet the requirements of the green degree and the module degree of the construction machinery.



2005 ◽  
Vol 6 (1) ◽  
pp. 40-48 ◽  
Author(s):  
Iain M. Boyle ◽  
Kevin Rong ◽  
David C. Brown

Fixtures accurately locate and secure a part during machining operations. Various computer-aided fixture design (CAFD) methods have been developed to reduce design costs associated with fixturing. One approach uses a case-based reasoning (CBR) method where relevant design experience is retrieved from a design library and adapted to provide a new design solution. Indexing design cases is a critical issue in CBR, and CBR systems can suffer from an inability to distinguish between cases if indexing is inadequate. This paper presents CAFixD, a CAFD methodology that adopts a rigorous approach to defining indexing attributes based upon axiomatic design functional requirement decomposition. A design requirement is decomposed in terms of functional requirements, physical solutions are retrieved and adapted for each individual requirement, and the design is then reconstituted to form a complete fixture design. This paper presents the CAFixD framework and operation, and discusses in detail the indexing mechanisms used.



Sign in / Sign up

Export Citation Format

Share Document