Modular Design Method by Triple Design Structure Matrixes of Customer Needs, Physical Functions and Entity Structure

2016 ◽  
Vol 2016.26 (0) ◽  
pp. 2209 ◽  
Author(s):  
Kana SAWAI ◽  
Yutaka NOMAGUCHI ◽  
Kikuo FUJITA
Author(s):  
Masato Toi ◽  
Yutaka Nomaguchi ◽  
Kikuo Fujita

Abstract This paper proposed a design support method based on structuralization and analysis of various design candidates of product architecture design. The product architecture is a basic scheme that assigns the function of the product to physical components. In the conventional modular design method, a concise model, i.e., a graph or a matrix, is used to express the interactions of the system’s components and aims to support the designer grasping the system behavior. The Design Structure Matrix (DSM) is a representative model of system architecture and enables quantitative evaluation of design candidates. While various design candidates are generated through mathematical operations, it is difficult to understand their relationships from simple comparisons because of discrete behavior and the size of the problem. It must be a critical issue at the stage of selecting and interpreting the design candidates. In the proposed method, the design candidates are classified and structuralized as a dendrogram by the hierarchical clustering method. The comparison of clusters of each branch of dendrogram clarifies the system leverage points. The information of the system is summarized into the hierarchical tree-shaped graph that corresponds to the dendrogram. The designer can explore the design candidates with such a graph-based based interpretation of underlying structures effectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Xin Wang ◽  
Bo Luo

The development of customized service is an important way to transform and upgrade China’s mining industry. However, in practice, there remain problems, such as the slow market response speed of service providers and the contradiction between the large-scale development of service providers and the personalized service needs of service demanders. This paper uses the theory and method of service modular design to solve these problems and explores the process-based service modular design method. Service modular design depends largely on the determination of the relationship between service activities and the reasonable division of modules. However, previous research has rarely made use of modular design methods and modeling tools in the mining service context. At the same time, evaluations of the relationship between service activities relying on knowledge and those relying on experience have been inconclusive. Therefore, this paper proposes a service modularization design method based on the fuzzy relation analysis of a design structure matrix (DSM) that solves the optimal module partition scheme. Triangular fuzzy number and fuzzy evidence theory are used to evaluate and fuse the multidimensional and heterogeneous relationship between service activities, and the quantitative processing of the comprehensive relationship between service activities is carried out. On this basis, the service module structure is divided, followed by the construction of the mathematical programming model with the maximum sum of the average cohesion degree in the module and the average coupling degree between modules as the driving goal. The genetic algorithm is used to solve the problem, and the optimal module division result is obtained. Finally, taking the service modular design of SHD coal production enterprises in China as an example, the feasibility of the proposed method is verified.


2022 ◽  
Vol 14 (2) ◽  
pp. 722
Author(s):  
Di Feng ◽  
Chunfu Lu ◽  
Shaofei Jiang

Manufacturing small- and medium-sized enterprises (SMEs) play a crucial role in the economic development and resource consumption of most regions. Conceptually, a product-service system (PSS) can be an effective way to improve the sustainability of manufacturing SMEs. However, the construction of PSSs requires enterprises to integrate a large number of product and service resources. Moreover, current PSS design methods mostly construct a new set of highly service-oriented PSS solutions based on customer needs while seldom considering the combination of acceptability and sustainability for manufacturing SMEs at the initial stage of design, which may lead to the difficulties in applying PSS solutions beyond enterprise integration capacity or result in the waste of existing product resources. Instead of constructing a new PSS solution, this paper proposes the treatment of existing product modules as the original system. The PSS solution is iteratively constructed with the upgrade of the original system in a gradual way, which is driven by systematic performance (this process can be suspended and repeated). Phased iterative design solutions can be applied by manufacturing SMEs according to their development needs. The analytic hierarchy process (AHP), Lean Design-for-X (LDfX), design structure matrix (DSM), and Pearson correlation coefficient (PCC) are combined in an iterative design process from customer needs and system performances to PSS solutions. The feasibility of the proposed method is verified through the iterative design case from electric pallet trucks to warehousing systems. It is proved that this method is more sustainable and easier to be accepted by manufacturing SMEs than existing PSS design methods through in-depth interviews with entrepreneurs.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110343
Author(s):  
Mei Yang ◽  
Yimin Xia ◽  
Lianhui Jia ◽  
Dujuan Wang ◽  
Zhiyong Ji

Modular design, Axiomatic design (AD) and Theory of inventive problem solving (TRIZ) have been increasingly popularized in concept design of modern mechanical product. Each method has their own advantages and drawbacks. The benefit of modular design is reducing the product design period, and AD has the capability of problem analysis, while TRIZ’s expertise is innovative idea generation. According to the complementarity of these three approaches, an innovative and systematic methodology is proposed to design big complex mechanical system. Firstly, the module partition is executed based on scenario decomposition. Then, the behavior attributes of modules are listed to find the design contradiction, including motion form, spatial constraints, and performance requirements. TRIZ tools are employed to deal with the contradictions between behavior attributes. The decomposition and mapping of functional requirements and design parameters are carried out to construct the structural hierarchy of each module. Then, modules are integrated considering the connections between each other. Finally, the operation steps in application scenario are designed in temporal and spatial dimensions. Design of cutter changing robot for shield tunneling machine is taken as an example to validate the feasibility and effectiveness of the proposed method.


2014 ◽  
Vol 716-717 ◽  
pp. 1518-1521
Author(s):  
Shu Fang ◽  
Yan Xu ◽  
Fei Dong

The manufacture of fire robot has characteristics such as different types and piece production, and flexible manufacture and cost control of the fire robot must be considered due to these characteristics. In this paper, the similarity of fire robot’s working environment was analyzed, The demand of chassis’s adaptability and the method using general technical platform were discussed with the thinking of modular design, and new series fire robots which composed of the general platform and different function modules were proposed, and the manufacture cost of traditional design method and modular design method were compared in using the activity-based costing method, and under the new design method the manufacture cost were decreased extremely.


2014 ◽  
Vol 1049-1050 ◽  
pp. 828-832
Author(s):  
J.R. Yang

The aim of this study was to obtain the method of the green design and modular design that oriented construction machinery products. A variety of modern design tools such as the finite element analysis software package and optimize design package and a two-factor evaluation fuzzy modelare used to analyze and Evaluation the green degree and the module degree of the construction machinery. Some modern mathematical tools such as AHP and fuzzy comprehensive evaluation method are used to calculate and evaluate the green degree and the module degree in construction machinery design. The proposed design method can meet the requirements of the green degree and the module degree of the construction machinery.


2014 ◽  
Vol 599-601 ◽  
pp. 358-361
Author(s):  
Huan Qiang ◽  
Hu Zhang ◽  
Yan Zhou

A design method of modular joint is proposed according to the complicated structure, line exposed and heavier characteristics of multi-DOF (degree of freedom) mechanical arm. In this paper, the design of modular joint was carried on and a model of six-DOF mechanical arm was built through the research on the structure of mechanical arm. On this basis, dynamics simulation will be carried. The results show that the modular design method simplified the structure of the mechanical arm, the dynamics simulation proved it was feasible for the structure design and drive selection.


2002 ◽  
Vol 10 (2) ◽  
pp. 153-164 ◽  
Author(s):  
J. C. Sand ◽  
P. Gu ◽  
G. Watson

Product modularization aims to improve the overall design, manufacturing, operational, and post-retirement characteristics of products by designing or redesigning the product architectures. A successful modular product can assist the reconfiguration of products, while reducing the lead-time of design and manufacturing and improving the ability for upgrading, maintenance, customization and recycling. This paper presents a new modular design method called the House Of Modular Enhancement (HOME) for product redesign. Information from various aspects of the product design, including functional requirements, product architecture and life cycle requirements, is incorporated in the method to help ensure that a modularized product would achieve the objectives. The HOME method has been implemented in a software system. A case study will be presented to illustrate the HOME method and the software.


2013 ◽  
Vol 457-458 ◽  
pp. 872-877
Author(s):  
Yan Xin Yu ◽  
Rong Chun Sun

Based on the principle of ultrasonic transit time ranging, this article describes that the microcontroller is used as the core to develop the ultrasonic distance-measurement automobile-reversing radar control system. The system includes both hardware and software parts. The hardware part mainly consist single-chip control circuit, ultrasonic transmitting and receiving circuits, temperature compensation circuit and voice alarm circuit. The software design part of the system was divided into several function modules with modular design method, such as main program module, temperature measurement module, voice alarm module and so on. The main program was responsible for dispatching management all the modules. Experiments show that this system can reach design requirement and has high value and broad application prospects.


Author(s):  
Xiaoxia Lai ◽  
John K. Gershenson

Researchers have expanded the definition of product modularity from function-based modularity to life-cycle process-based modularity. In parallel, measures of product modularity have been developed as well as corresponding modular product design methods. However, a correct modularity measure and modular design method are not enough to realize modular product design. To apply the measure and design method correctly, product representation becomes an important aspect of modular design and imperative for realizing the promised cost savings of modularity. In this paper, a representation for retirement process-based modular design has been developed. Built upon previous representations for assembly and manufacturing-based product design, the representation includes a process similarity matrix and a process dependency matrix. The retirement process-based similarity is based on the similarity in components’ post-life intents (recycling, reuse, disposal), and either the degree of their material compatibility if the components will be recycled, or their disassembly direction or disassembly tools if they need to be disassembled from each other for retirement. Process similarity within a module leads to increased process efficiency (the elimination of non-value added tasks) from the sharing of tooling/equipment. Retirement process-based dependency is developed based on disassembly difficulty, one aspect of the physical interactions between components. Retiring components together as a module to eliminate disassembly and differential processing and reducing the disassembly difficulty between the modules can increase the efficiency of the retirement process. We have first presented which process elements we should consider for defining retirement process similarity and dependency, and then constructed the respective similarity and dependency factors tables. These tables include similarity and dependency factors, which, along with their quantifications, are used to determine a product’s modular architecture to facilitate the retirement process. Finally, a fishing reel is used to illustrate how to apply these factors tables to generate the similarity and dependency matrices that represent a product for retirement-process based modular design. Using these representations as input to the DSM-based modular design methods, we can achieve a design with a modular architecture that improves the retirement process efficiency and reduces retirement costs.


Sign in / Sign up

Export Citation Format

Share Document