Topology Optimization Taking Into Account Geometrical Constraint of No-Closed Hole for Additive Manufacturing Based on Fictitious Physical Model Concept

2021 ◽  
Author(s):  
Takayuki Yamada ◽  
Yuki Noguchi

Abstract This paper proposes a topology optimization method that considers the geometrical constraint of a non-closed hole for additive manufacturing based on the fictitious physical model concept. First, the basic topology optimization concept and level set-based method are introduced. Second, the concept of a fictitious physical model for geometrical constraint in the topology optimization framework is discussed. Then, the model for the geometrical constraint of a non-closed hole for additive manufacturing is proposed. Numerical examples are provided to validate the proposed model. In addition, topology optimization considering this geometrical constraint is formulated, and topology optimization algorithms are constructed using the finite element method. Finally, optimization examples are provided to validate the proposed topology optimization method.

2019 ◽  
Vol 822 ◽  
pp. 526-533
Author(s):  
Alexey Orlov ◽  
Dmitriy V. Masaylo ◽  
Igor A. Polozov ◽  
Pu Guang Ji

Due to the additive manufacturing process concept - layered synthesis of products, it becomes necessary to apply new approaches to the design of parts. One of the main tools that need to operate is numerical simulation, capable, with a skilful approach, to give an engineer an integrated procedure to the development of new products. Numerical modeling, in addition to carrying out strength calculations, includes topology optimization and the creation of lattice structures, through which it is possible to create lightweight products. New design meets requirements of strength characteristics. The use of this tool leads to a reduction in the amount of initial material and as a result - cost saving. In this paper, using the bracket as an example, was used the topology optimization method with subsequent redesign. The paper presents the results of calculations of the stress-strain state of the initial and final structures, allowing estimating the possible reduction in the mass of the product and the amount of consumable material in the manufacture of additive technologies.


Author(s):  
Yuqing Zhou ◽  
Tsuyoshi Nomura ◽  
Kazuhiro Saitou

Topology optimization for additive manufacturing has been limited to the design of single-piece components that fit within the printer's build volume. This paper presents a gradient-based multicomponent topology optimization method for structures assembled from components built by powder bed additive manufacturing (MTO-A), which enables the design of multipiece assemblies larger than the printer's build volume. Constraints on component geometry for powder bed additive manufacturing are incorporated in a density-based topology optimization framework, with an additional design field governing the component partitioning. For each component, constraints on the maximum allowable build volume (i.e., length, width, and height) and the elimination of enclosed cavities are imposed during the simultaneous optimization of the overall topology and component partitioning. Numerical results of the minimum compliance designs revealed that manufacturing constraints, previously applied to single-piece topology optimization, can unlock richer design exploration space when applied to multicomponent designs.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 774
Author(s):  
Haitao Luo ◽  
Rong Chen ◽  
Siwei Guo ◽  
Jia Fu

At present, hard coating structures are widely studied as a new passive damping method. Generally, the hard coating material is completely covered on the surface of the thin-walled structure, but the local coverage cannot only achieve better vibration reduction effect, but also save the material and processing costs. In this paper, a topology optimization method for hard coated composite plates is proposed to maximize the modal loss factors. The finite element dynamic model of hard coating composite plate is established. The topology optimization model is established with the energy ratio of hard coating layer to base layer as the objective function and the amount of damping material as the constraint condition. The sensitivity expression of the objective function to the design variables is derived, and the iteration of the design variables is realized by the Method of Moving Asymptote (MMA). Several numerical examples are provided to demonstrate that this method can obtain the optimal layout of damping materials for hard coating composite plates. The results show that the damping materials are mainly distributed in the area where the stored modal strain energy is large, which is consistent with the traditional design method. Finally, based on the numerical results, the experimental study of local hard coating composites plate is carried out. The results show that the topology optimization method can significantly reduce the frequency response amplitude while reducing the amount of damping materials, which shows the feasibility and effectiveness of the method.


Author(s):  
Akihiro Takezawa ◽  
Shinji Nishiwaki ◽  
Kazuhiro Izui ◽  
Masataka Yoshimura

This paper discuses a new topology optimization method using frame elements for the design of mechanical structures at the conceptual design phase. The optimal configurations are determined by maximizing multiple eigen-frequencies in order to obtain the most stable structures for dynamic problems. The optimization problem is formulated using frame elements having ellipsoidal cross-sections, as the simplest case. Construction of the optimization procedure is based on CONLIN and the complementary strain energy concept. Finally, several examples are presented to confirm that the proposed method is useful for the topology optimization method discussed here.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Teng Zhou ◽  
Yifan Xu ◽  
Zhenyu Liu ◽  
Sang Woo Joo

Topology optimization method is applied to a contraction–expansion structure, based on which a simplified lateral flow structure is generated using the Boolean operation. A new one-layer mixer is then designed by sequentially connecting this lateral structure and bent channels. The mixing efficiency is further optimized via iterations on key geometric parameters associated with the one-layer mixer designed. Numerical results indicate that the optimized mixer has better mixing efficiency than the conventional contraction–expansion mixer for a wide range of the Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document