A Zero-Trust Methodology for Security of Complex Systems With Machine Learning Components

2021 ◽  
Author(s):  
Britta Hale ◽  
Douglas L. Van Bossuyt ◽  
Nikolaos Papakonstantinou ◽  
Bryan O’Halloran

Abstract Fuelled by recent technological advances, Machine Learning (ML) is being introduced to safety and security-critical applications like defence systems, financial systems, and autonomous machines. ML components can be used either for processing input data and/or for decision making. The response time and success rate demands are very high and this means that the deployed training algorithms often produce complex models that are not readable and verifiable by humans (like multi layer neural networks). Due to the complexity of these models, achieving complete testing coverage is in most cases not realistically possible. This raises security threats related to the ML components presenting unpredictable behavior due to malicious manipulation (backdoor attacks). This paper proposes a methodology based on established security principles like Zero-Trust and defence-in-depth to help prevent and mitigate the consequences of security threats including ones emerging from ML-based components. The methodology is demonstrated on a case study of an Unmanned Aerial Vehicle (UAV) with a sophisticated Intelligence, Surveillance, and Reconnaissance (ISR) module.

2020 ◽  
Author(s):  
Eny Puspita Ningrum

Education is an important thing that has become a necessity for every human being in order to achieve a better quality of life. Education cannot be separated from the educational curriculum, which is where the curriculum continues to develop following every development of society and technological advances. The curriculum is the heart of education and is dynamic in nature where the curriculum must always be updated or changed. From this curriculum reform and change, it is a challenge for teachers to continue to innovate to improve the quality of education. By using a qualitative research method a case study approach, it is hoped that it can explain the real picture that is being experienced by the teacher at SMK Ibnu Sina. which focuses on the Sharia Banking major due to changes in the adjusted curriculum because the world is being faced by COVID-19. In the era of COVID-19, the educational curriculum must be adjusted, which in the beginning learning can be face-to-face now has turned into a distance learning online learning model.


i-com ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 19-32
Author(s):  
Daniel Buschek ◽  
Charlotte Anlauff ◽  
Florian Lachner

Abstract This paper reflects on a case study of a user-centred concept development process for a Machine Learning (ML) based design tool, conducted at an industry partner. The resulting concept uses ML to match graphical user interface elements in sketches on paper to their digital counterparts to create consistent wireframes. A user study (N=20) with a working prototype shows that this concept is preferred by designers, compared to the previous manual procedure. Reflecting on our process and findings we discuss lessons learned for developing ML tools that respect practitioners’ needs and practices.


2021 ◽  
Vol 11 (15) ◽  
pp. 6704
Author(s):  
Jingyong Cai ◽  
Masashi Takemoto ◽  
Yuming Qiu ◽  
Hironori Nakajo

Despite being heavily used in the training of deep neural networks (DNNs), multipliers are resource-intensive and insufficient in many different scenarios. Previous discoveries have revealed the superiority when activation functions, such as the sigmoid, are calculated by shift-and-add operations, although they fail to remove multiplications in training altogether. In this paper, we propose an innovative approach that can convert all multiplications in the forward and backward inferences of DNNs into shift-and-add operations. Because the model parameters and backpropagated errors of a large DNN model are typically clustered around zero, these values can be approximated by their sine values. Multiplications between the weights and error signals are transferred to multiplications of their sine values, which are replaceable with simpler operations with the help of the product to sum formula. In addition, a rectified sine activation function is utilized for further converting layer inputs into sine values. In this way, the original multiplication-intensive operations can be computed through simple add-and-shift operations. This trigonometric approximation method provides an efficient training and inference alternative for devices with insufficient hardware multipliers. Experimental results demonstrate that this method is able to obtain a performance close to that of classical training algorithms. The approach we propose sheds new light on future hardware customization research for machine learning.


2021 ◽  
Vol 11 (13) ◽  
pp. 5826
Author(s):  
Evangelos Axiotis ◽  
Andreas Kontogiannis ◽  
Eleftherios Kalpoutzakis ◽  
George Giannakopoulos

Ethnopharmacology experts face several challenges when identifying and retrieving documents and resources related to their scientific focus. The volume of sources that need to be monitored, the variety of formats utilized, and the different quality of language use across sources present some of what we call “big data” challenges in the analysis of this data. This study aims to understand if and how experts can be supported effectively through intelligent tools in the task of ethnopharmacological literature research. To this end, we utilize a real case study of ethnopharmacology research aimed at the southern Balkans and the coastal zone of Asia Minor. Thus, we propose a methodology for more efficient research in ethnopharmacology. Our work follows an “expert–apprentice” paradigm in an automatic URL extraction process, through crawling, where the apprentice is a machine learning (ML) algorithm, utilizing a combination of active learning (AL) and reinforcement learning (RL), and the expert is the human researcher. ML-powered research improved the effectiveness and efficiency of the domain expert by 3.1 and 5.14 times, respectively, fetching a total number of 420 relevant ethnopharmacological documents in only 7 h versus an estimated 36 h of human-expert effort. Therefore, utilizing artificial intelligence (AI) tools to support the researcher can boost the efficiency and effectiveness of the identification and retrieval of appropriate documents.


Sign in / Sign up

Export Citation Format

Share Document