Nonlinear Normal Modes of Buckled Beams: Three-to-One and One-to-One Internal Resonances

Author(s):  
Ali H. Nayfeh ◽  
Walter Lacarbonara ◽  
Char-Ming Chin

Abstract Nonlinear normal modes of a buckled beam about its first buckling mode shape are investigated. Fixed-fixed boundary conditions are considered. The cases of three-to-one and one-to-one internal resonances are analyzed. Approximate expressions for the nonlinear normal modes are obtained by applying the method of multiple scales to the governing integro-partial-differential equation and boundary conditions. Curves displaying variation of the amplitude with the internal resonance detuning parameter are generated. It is shown that, for a three-to-one internal resonance between the first and third modes, the beam may possess either one stable mode, or three stable normal modes, or two stable and one unstable normal modes. On the other hand, for a one-to-one internal resonance between the first and second modes, two nonlinear normal modes exist. The two nonlinear modes are either neutrally stable or unstable. In the case of one-to-one resonance between the third and fourth modes, two neutrally stable, nonlinear normal modes exist.

1995 ◽  
Vol 117 (2) ◽  
pp. 199-205 ◽  
Author(s):  
A. H. Nayfeh ◽  
S. A. Nayfeh

We use two approaches to determine the nonlinear modes and natural frequencies of a simply supported Euler-Bernoulli beam resting on an elastic foundation with distributed quadratic and cubic nonlinearities. In the first approach, we use the method of multiple scales to treat the governing partial-differential equation and boundary conditions directly. In the second approach, we use a Galerkin procedure to discretize the system and then determine the normal modes from the discretized equations by using the method of multiple scales and the invariant manifold approach. Whereas one- and two-mode discretizations produce erroneous results for continuous systems with quadratic and cubic nonlinearities, all methods, in the present case, produce the same results because the discretization is carried out by using a complete set of basis functions that satisfy the boundary conditions.


2018 ◽  
Vol 13 (4) ◽  
Author(s):  
S. Mahmoudkhani

A new scheme based on the homotopy analysis method (HAM) is developed for calculating the nonlinear normal modes (NNMs) of multi degrees-of-freedom (MDOF) oscillatory systems with quadratic and cubic nonlinearities. The NNMs in the presence of internal resonances can also be computed by the proposed method. The method starts by approximating the solution at the zeroth-order, using some few harmonics, and proceeds to higher orders to improve the approximation by automatically including higher harmonics. The capabilities and limitations of the method are thoroughly investigated by applying them to three nonlinear systems with different nonlinear behaviors. These include a two degrees-of-freedom (2DOF) system with cubic nonlinearities and one-to-three internal resonance that occurs on nonlinear frequencies at high amplitudes, a 2DOF system with quadratic and cubic nonlinearities having one-to-two internal resonance, and the discretized equations of motion of a cylindrical shell. The later one has internal resonance of one-to-one. Moreover, it has the symmetry property and its DOFs may oscillate with phase difference of 90 deg, leading to the traveling wave mode. In most cases, the estimated backbone curves are compared by the numerical solutions obtained by continuation of periodic orbits. The method is found to be accurate for reasonably high amplitude vibration especially when only cubic nonlinearities are present.


Author(s):  
G. Rega ◽  
N. Srinil ◽  
S. Chucheepsakul

Internally resonant dynamics in the nonlinear free vibrations of suspended cables are analytically investigated by means of a multi-mode Galerkin-based discretization and second-order multiple scales. Emphasis is placed on planar 2:1 internal resonances. The equations of motion of a general inclined cable model, which account for the dynamic extensibility effects and the system asymmetry due to inclined equilibrium, are considered. By considering higher-order effects due to quadratic nonlinearities, approximate closed-form solutions of nonlinear amplitudes, frequencies and dynamic configurations associated with the resonant nonlinear normal modes reveal the dependence of cable nonlinear response on different resonant and non-resonant modes. Based on the modal convergence properties performed on the resonantly activated cables, the illustrative results provide hints for proper reduced-order model selections from the asymptotic solution. The underlying effects of cable inclination and cable sag are presented. The theoretical predictions are validated by finite difference numerical time laws of the original system equations of motion.


1996 ◽  
Vol 63 (3) ◽  
pp. 810-819 ◽  
Author(s):  
M. E. King ◽  
A. F. Vakakis

A formulation for computing resonant nonlinear normal modes (NNMs) is developed for discrete and continuous systems. In a canonical framework, internal resonance conditions are immediately recognized by identifying commensurable linearized natural frequencies of these systems. Additionally, a canonical formulation allows for a single (linearized modal) coordinate to parameterize all other coordinates during a resonant NNM response. Energy-based NNM methodologies are applied to a canonical set of equations and asymptotic solutions are sought. In order to account for the resonant modal interactions, it will be shown that high-order terms in the O(1) solutions must be considered (in the absence of internal resonances, a linear expansion at O(1) is sufficient). Two applications (‘3:1’ resonances in a two-degree-of-freedom system and ‘3:1’ resonance in a hinged-clamped beam) are then considered by which to demonstrate the resonant NNM methodology. It is shown that for some responses, nonlinear modal relations do not exist in the context of physical coordinates and thus a transformation to a canonical framework is necessary in order to appropriately define NNM relations.


1995 ◽  
Vol 1 (4) ◽  
pp. 389-430 ◽  
Author(s):  
Ali H. Nayfeh

A direct method based on the method of normal forms is proposed for constructing the nonlinear normal modes of continuous systems. The proposed method is compared with the method of multiple scales and the methods of Shaw and Pierre and King and Vakakis by applying them to three conservative systems with cubic nonlinearities: (a) a hinged-hinged beam resting on a nonlinear elastic foundation, (b) a model of a relief valve (linear elastic spring attached to a nonlinear spring with a mass), and (c) a simply supported linear beam with nonlinear torsional springs at both ends. In the absence of internal resonance, the constructed nonlinear modes with all four methods are the same. The method of multiple scales seems to be the simplest and the least computationally demanding. The methods of multiple scales and normal forms are applicable to problems with and without internal resonances, whereas the present forms of the methods of Shaw and Pierre and King and Vakakis are not applicable to problems with internal resonances.


Author(s):  
Alexander F. Vakakis ◽  
Richard H. Rand

We study the resonant dynamics of a two-degree-of-freedom system composed a linear oscillator weakly coupled to a strongly nonlinear one, with an essential (nonlinearizable) cubic stiffness nonlinearity. For the undamped system this leads to a series of internal resonances, depending on the level of (conserved) total energy of oscillation. We study in detail the 1:1 internal resonance, and show that the undamped system possesses stable and unstable synchronous periodic motions (nonlinear normal modes — NNMs), as well as, asynchronous periodic motions (elliptic orbits — EOs). Furthermore, we show that when damping is introduced certain NNMs produce resonance capture phenomena, where a trajectory of the damped dynamics gets ‘captured’ in the neighborhood of a damped NNM before ‘escaping’ and becoming an oscillation with exponentially decaying amplitude. In turn, these resonance captures may lead to passive nonlinear energy pumping phenomena from the linear to the nonlinear oscillator. Thus, sustained resonance capture appears to provide a dynamical mechanism for passively transferring energy from one part of the system to another, in a one-way, irreversible fashion. Numerical integrations confirm the analytical predictions.


2002 ◽  
Vol 8 (3) ◽  
pp. 337-387 ◽  
Author(s):  
Ali H. Nayfeh ◽  
Haider N. Arafat ◽  
Char-Ming Chin ◽  
Walter Lacarbonara

We investigate the nonlinear nonplanar responses of suspended cables to external excitations. The equations of motion governing such systems contain quadratic and cubic nonlinearities, which may result in two-to-one and one-to-one internal resonances. The sag-to-span ratio of the cable considered is such that the natural frequency of the first symmetric in-plane mode is at first crossover. Hence, the first symmetric in-plane mode is involved in a one-to-one internal resonance with the first antisymmetric in-plane and out-of-plane modes and, simultaneously, in a two-to-one internal resonance with the first symmetric out-of-plane mode. Under these resonance conditions, we analyze the response when the first symmetric in-plane mode is harmonically excited at primary resonance. First, we express the two governing equations of motion as four first-order (i.e., state-space formulation) partial-differential equations. Then, we directly apply the methods of multiple scales and reconstitution to determine a second-order uniform asymptotic expansion of the solution, including the modulation equations governing the dynamics of the phases and amplitudes of the interacting modes. Then, we investigate the behavior of the equilibrium and dynamic solutions as the forcing amplitude and resonance detunings are slowly varied and determine the bifurcations they may undergo.


Author(s):  
Hassen M. Ouakad ◽  
Hamid M. Sedighi ◽  
Mohammad I. Younis

The nonlinear modal coupling between the vibration modes of an arch-shaped microstructure is an interesting phenomenon, which may have desirable features for numerous applications, such as vibration-based energy harvesters. This work presents an investigation into the potential nonlinear internal resonances of a microelectromechanical systems (MEMS) arch when excited by static (DC) and dynamic (AC) electric forces. The influences of initial rise and midplane stretching are considered. The cases of one-to-one and three-to-one internal resonances are studied using the method of multiple scales and the direct attack of the partial differential equation of motion. It is shown that for certain initial rises, it is possible to activate a three-to-one internal resonance between the first and third symmetric modes. Also, using an antisymmetric half-electrode actuation, a one-to-one internal resonance between the first symmetric and the second antisymmetric modes is demonstrated. These results can shed light on such interactions that are commonly found on micro and nanostructures, such as carbon nanotubes.


2002 ◽  
Vol 68 (671) ◽  
pp. 1950-1958
Author(s):  
Tetsuro TOKOYODA ◽  
Noriaki YAMASHITA ◽  
Hiroyuki OISHI ◽  
Takeshi YAMAMOTO ◽  
Masatsugu YOSHIZAWA

Sign in / Sign up

Export Citation Format

Share Document