Stability Analysis of Finite Difference Model of Orthogonal Metal Cutting in Presence of Random Noises

Author(s):  
Alexandra Rodkina ◽  
Marian Wiercigroch

Abstract The dynamics of a nonlinear cutting process in the presence of random noise is defined and investigated. This approach is adequate for a wide range of models describing the orthogonal metal cutting processes by a single-degree-of-freedom oscillator, where the nonlinearity comes from the cutting force in form of a variable resistance force. The method of Lyapunov–Krasovskii functional was adopted to analyze the necessary conditions for a stable operation. The conditions ensuring an asymptotic stability in the presence of random noises are established.

Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2949
Author(s):  
Vladimir Kodnyanko ◽  
Andrey Kurzakov ◽  
Olga Grigorieva ◽  
Maxim Brungardt ◽  
Svetlana Belyakova ◽  
...  

Stepped hydrostatic thrust bearings used in metal-cutting machines are characterized by high load capacity and damping, which ensure the stable operation of structures. However, in comparison with throttle thrust bearings, they have a high compliance. It is preferable that, in addition to the main bearing function, a modern hydrostatic bearing has the ability to provide low (including negative) compliance for the implementation of an adaptive function in order to actively compensate for the deformation of the machine resilient system, thereby increasing the accuracy of metalworking. This paper considers the design of a stepped hydrostatic thrust bearing, which, in order to reduce the compliance to negative values, features a technical improvement consisting of the use of an active displacement compensator on an elastic suspension. In this paper, the results of mathematical modeling and theoretical research of stationary and non-stationary modes of operation of the adaptive thrust bearing are presented. The possibility of a significant reduction in the static compliance of the structure, including the negative compliance values, is shown. It was found that negative compliance is provided in a wide range of loads, which can be up to 80% of the range of permissible bearing loads. The study of the dynamic characteristics showed that with a targeted selection of parameters that ensure optimal performance, the adaptive thrust bearing is able to operate stably in the entire range of permissible loads. It has been established that an adaptive stepped hydrostatic thrust bearing with a displacement compensator has a high stability margin, sufficient to ensure its operability when implementing the adaptive function.


2004 ◽  
Vol 471-472 ◽  
pp. 582-586 ◽  
Author(s):  
Shi Jin Chen ◽  
Q.L. Pang ◽  
K. Cheng

In this paper, a finite element model of a two-dimensional orthogonal metal cutting process is used to simulate the chip formation, cutting forces, stress, strain and temperature distributions. Two deformable parts are involved in this model: the workpiece and the cutting tool. To make the results of the simulation agree the orthogonal cutting test better, the separation surface between the chip and the machined surface is not predefined in this simulation. The chip-separation criterion is based on the Johnson and Cook law. This work will help as a reference to tackle more complex cutting processes such as oblique and discontinuous cutting.


PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xialong Ye ◽  
Juan Manuel Rodríguez Prieto ◽  
Ralf Müller

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2287
Author(s):  
Kaina Qin ◽  
Shanshan Wang ◽  
Zhongjian Kang

With the rapid increase in the proportion of the installed wind power capacity in the total grid capacity, the state has put forward higher and higher requirements for wind power integration into the grid, among which the most difficult requirement is the zero-voltage ride through (ZVRT) capability of the wind turbine. When the voltage drops deeply, a series of transient processes, such as serious overvoltage, overcurrent, or speed rise, will occur in the motor, which will seriously endanger the safe operation of the wind turbine itself and its control system, and cause large-scale off-grid accident of wind generator. Therefore, it is of great significance to improve the uninterrupted operation ability of the wind turbine. Doubly fed induction generator (DFIG) can achieve the best wind energy tracking control in a wide range of wind speed and has the advantage of flexible power regulation. It is widely used at present, but it is sensitive to the grid voltage. In the current study, the DFIG is taken as the research object. The transient process of the DFIG during a fault is analyzed in detail. The mechanism of the rotor overcurrent and DC bus overvoltage of the DFIG during fault is studied. Additionally, the simulation model is built in DIgSILENT. The active crowbar hardware protection circuit is put into the rotor side of the wind turbine, and the extended state observer and terminal sliding mode control are added to the grid side converter control. Through the cooperative control technology, the rotor overcurrent and DC bus overvoltage can be suppressed to realize the zero-voltage ride-through of the doubly fed wind turbine, and ensure the safe and stable operation of the wind farm. Finally, the simulation results are presented to verify the theoretical analysis and the proposed control strategy.


1985 ◽  
Vol 107 (4) ◽  
pp. 349-354 ◽  
Author(s):  
J. S. Strenkowski ◽  
J. T. Carroll

A finite element model of orthogonal metal cutting is described. The paper introduces a new chip separation criterion based on the effective plastic strain in the workpiece. Several cutting parameters that are often neglected in simplified metal-cutting models are included, such as elastic-plastic material properties of both the workpiece and tool, friction along the tool rake face, and geometry of the cutting edge and workpiece. The model predicts chip geometry, residual stresses in the workpiece, and tool stresses and forces, without any reliance on empirical metal cutting data. The paper demonstrates that use of a chip separation criterion based on effective plastic strain is essential in predicting chip geometry and residual stresses with the finite element method.


2018 ◽  
Vol MA2018-01 (31) ◽  
pp. 1917-1917
Author(s):  
Dongho Lee ◽  
Kyoung-Shin Choi

Producing hydrogen via solar water splitting using a photoelectrochemical cell (PEC) persists as one of the most exciting research topics in the field of solar fuels. The construction of efficient PECs requires the integration of multiple components including a photoanode, a photocathode, an oxygen evolution catalyst, and a hydrogen evolution catalyst. Therefore, the compatibility and stability of all of these elements in a given operating condition are crucial. When the stability of a semiconductor electrode used as the photoanode or photocathode is limited in an acidic or basic condition which is optimum for the operation of the other components, a thin protective layer has been deposited on the semiconductor surface to prevent its chemical dissolution. Surface coating of a thin and conformal TiO2 layer has been proven to be successful for protecting photoelectrodes since TiO2 is chemically and electrochemically stable in a wide range of pH conditions under both anodic and cathodic conditions. In order to prevent the semiconductor surface from coming into direct contact with the corrosive electrolyte, complete coverage of the photoelectrode with TiO2 is required. At the same time, the TiO2 layer should be thin enough not to interfere with the charge transport properties of the photoelectrode. As a result, atomic layer deposition (ALD) has been the only successful tool used to date to produce an effective protective layer. However, the slow processing time and economic viability of ALD methods motivated us to develop an inexpensive and facile solution-based synthesis method for the deposition of high quality TiO2 coating layers. In this presentation, we report a new electrochemical method to deposit a thin and conformal TiO2 layer on nanoporous BiVO4 that has an intricate, high surface area morphology. BiVO4 is a promising n-type photoanode material with a relatively low bandgap (2.4~2.5 eV). However, its usage has been limited to neutral and mildly basic conditions (pH 5~9) because it is chemically unstable in strongly acidic and basic conditions. Our method allows for the deposition of a 5~6 nm thick TiO2 layer on BiVO4 within 1 min and the resulting BiVO4/TiO2 electrodes exhibit chemical stability in basic solutions (pH 12~13). Sulfite oxidation measurements of BiVO4 and BiVO4/TiO2 electrodes show that the thin TiO2 protective layer does not significantly reduce the hole transfer to the electrolyte. Finally, we demonstrate the photoelectrochemical stability of the BiVO4/TiO2 electrode for photoelectrochemical water oxidation in basic solutions by coupling the BiVO4/TiO2 electrode with appropriate oxygen evolution catalysts.


1999 ◽  
Vol 39 (7) ◽  
pp. 5-11 ◽  
Author(s):  
Valentina Lazarova ◽  
Danièle Bellahcen ◽  
Jacques Manem ◽  
David A. Stahl ◽  
Bruce E. Rittmann

TURBO N® is a circulating-bed biofilm reactor that provides stable operation and high N removal for a wide range of N and BOD loadings. This paper describes the influence of operating conditions on biofilm composition and population dynamics when the TURBO N® is operated to achieve tertiary nitrification, simultaneous carbon and ammonia oxidation and total nitrogen removal when coupled with a pre-denitrification fixed floating bed reactor. In situ specific nitrification rates and respiration tests showed that ammonium and nitrite oxidizers became less active in the biofilm once oxidation of influent BOD became important. Analyses of community structure with oligonucleotide probes targeted to the 16S rRNA showed the same general trends for nitrifiers, but also suggested shifts in the makeup of the ammonium and nitrite oxidizers that could not be detected with respirometry or specific nitrification rates.


Sign in / Sign up

Export Citation Format

Share Document