scholarly journals Fabrication and Testing of Breast Tissue-Mimicking Phantom for Needle Biopsy Cutting: A Pilot Study

Author(s):  
Yu-Chen Jheng ◽  
Chi-Lun Lin

Breast lesion tissue can be extremely stiff, e.g. calcification or soft, e.g. adipose. When performing needle biopsy, too small or scanty samples can be retrieved due to the tissue is mainly compressed instead of being cut. In order to studying the tissue cutting performance in various cutting conditions, tissue-mimicking phantoms are frequently used as a surrogate of human tissue. The advantage of using tissue phantoms is that their mechanical properties can be controlled. The stiffness of a tissue phantom can be measured by an indentation test. Previous studies have demonstrated mathematic models to estimate Young’s moduli of tissue phantoms from force-displacement data with an adjustable coefficient according to the geometry of the indenter. Tissue force reactions occurred needle insertion has been largely researched [1], but few studies investigated the tissue cutting with a rotational needle, which is a cutting method largely used in the breast needle biopsy. Research has demonstrated that the influence of rotation can significantly reduce the insertion force [2], but the experiment was conducted on a specific formula of silicone-based tissue phantoms. This paper served as a pilot study of a large-scale experiment to study the effect of rotational cutting on various cutting conditions and target materials, including artificial and biological soft tissues. Two most common types of soft tissue phantoms, biopolymers (gelatin gels and agar) and chemically synthesized polymers (polydimethylsiloxane, PDMS) were investigated. Indentation tests were performed to estimate the mechanical properties of tissue phantoms which were then verified by finite element simulations. Tissue cutting tests with and without rotation were conducted to evaluate the effect of needle rotation on the tissue force reactions.

Author(s):  
A. Vidal-Lesso ◽  
E. Ledesma-Orozco ◽  
R. Lesso-Arroyo ◽  
L. Daza-Benitez

Biomechanical properties and dynamic response of soft tissues as articular cartilage remains issues for attention. Currently, linear isotropic models are still used for cartilage analysis in spite of its viscoelastic nature. Therefore, the aim of this study was to propose a nonlinear viscoelastic model for cartilage indentation that combines the geometrical parameters and velocity of the indentation test with the thickness of the sample as well as the mechanical properties of the tissue changing over time due to its viscoelastic behavior. Parameters of the indentation test and mechanical properties as a function of time were performed in Laplace space where the constitutive equation for viscoelasticity and the convolution theorem was applied in addition with the Maxwell model and Hayes et al. model for instantaneous elastic modulus. Results of the models were compared with experimental data of indentation tests on osteoarthritic cartilage of a unicompartmental osteoarthritis cases. The models showed a strong fit for the axial indentation nonlinear force in the loading curve (R2 = 0.992) and a good fit for unloading (R2 = 0.987), while an acceptable fit was observed in the relaxation curve (R2 = 0.967). These models may be used to study the mechanical response of osteoarthritic cartilage to several dynamical and geometrical test conditions.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1742
Author(s):  
Roberto Montanari ◽  
Alessandra Varone

FIMEC (flat-top cylinder indenter for mechanical characterisation) is an instrumented indentation test employing a cylindrical punch. It has been used to determine the mechanical properties of metallic materials in several applications of industrial interest. This work briefly describes the technique and the theory of indentation with a flat-ended punch. The flat indentation of metals has been investigated through experimental tests, and an equation has been derived to calculate the yield stress from the experimental data in deep indentation. The approach is supported by many data on various metals and alloys. Some selected case studies are presented in the paper: (i) crank manufacturing through pin squeeze casting; (ii) the evaluation of the local mechanical properties in a carter of complex geometry; (iii) the qualification of Al billets for extrusion; (iv) stress–relaxation tests on CuCrZr heat sinks; (v) the characterization of thick W coatings on CuCrZr alloy; (vi) the measure of the local mechanical properties of the molten-zone (MZ) and the heat-affected zone (HAZ) in welded joints. The case studies demonstrate the great versatility of the FIMEC test which provides information not available by employing conventional experimental techniques such as tensile, bending, and hardness tests. On the basis of theoretical knowledge and large amount of experimental data, FIMEC has become a mature technique for application on a large scale in industrial practice.


Author(s):  
Yue Xuan ◽  
Wei Tong

Indentation, in addition to the traditional tensile testing, has been widely used for evaluating mechanical properties of hard materials such as metals and bone as well as soft materials like polymer and soft tissues. However, it is difficult to measure the contact area and surface deformation in conventional indentation tests of soft tissue which will bring large errors to the evaluation of the material properties. Also the assumption of isotropic property limited the usage of indentation test in characterizing the nonlinear, anisotropic properties of soft tissue thin film. In this project, 2D and 3D finite element analyses has been carried out to predict hyperelastic material response under indentation and punch tests. A novel indentation test system was developed, which made the direct measurement of local deformation and contact area possible. The apparatus consists of a transparent indenter, a digital microscope, and a computer based control and data acquisition system. The proposed testing system and associated finite element analysis are used to characterize the mechanical properties of multiscale (bulk and thin film) biological tissues.


Author(s):  
M. A. J. Cox ◽  
R. A. Boerboom ◽  
C. V. C. Bouten ◽  
N. J. B. Driessen ◽  
F. P. T. Baaijens

Over the last few years, research interest in tissue engineering as an alternative for e.g. current treatment and replacement strategies for cardiovascular and heart valve diseaes has significantly increased. In vitro mechanical conditioning is an essential tool for engineering strong implantable tissues [1]. Detailed knowledge of the mechanical properties of the native tissue as well as the properties of the developing engineered constructs is vital for a better understanding and control of the mechanical conditioning process. The typical highly nonlinear and anisotropic behavior of soft tissues puts high demands on their mechanical characterization. Current standards in mechanical testing of soft tissues include (multiaxial) tensile testing and indentation tests. Uniaxial tensile tests do not provide sufficient information for characterizing the full anisotropic material behavior, while biaxial tensile tests are difficult to perform, and boundary effects limit the test region to a small central portion of the tissue. In addition, characterization of the local tissue properties from a tensile test is non-trivial. Indentation tests may be used to overcome some of these limitations. Indentation tests are easy to perform and when indenter size is small relative to the tissue dimensions, local characterization is possible. Therefore, we propose a spherical indentation test using finite deformations.


Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 566.1-566
Author(s):  
S. Afilal ◽  
H. Rkain ◽  
B. Berchane ◽  
J. Moulay Berkchi ◽  
S. Fellous ◽  
...  

Background:Methotrexate is a gold standard for treatment of RA. In our context, RA patients prefer to be injected by paramedics rather than self-injecting. This can be explained by patients’ bad perceptions of self-injection or lack of information. Appropriate self-injection education can therefore be an important element in overcoming these obstacles and improving disease self-management.Objectives:Compare the RA patients’ perceptions on methotrexate self-injection before and after a patient education session.Methods:Prospective pilot study that included 27 consecutive patients (81.5% female, mean age 44.4 years, illiteracy rate 40.7%) with RA (median duration of progression of 4 years, mean delay in referral for specialist of 6 months, median duration of methotrexate use of 1 year). The patients benefited from an individual patient education session to learn how to self-inject with methotrexate subcutaneously. The patient education session was supervised by a nurse and a rheumatologist with a control a week later. Perceptions of the reluctance to self-inject and the difficulties encountered by patients were assessed before the patient education session, after the 1st and 2nd self-injection of methotrexate using a 10 mm visual analog scale. Patients also reported their level of satisfaction (10 mm VAS) after the 1st and 2nd self-injection.Results:The mean duration of patient education session is 13 min.Table I compares the evolution of the degrees of reluctance to self-injection, the difficulties encountered, and the satisfaction experienced by the patients.Table 1.Evolution of RA patients’ perceptions on the methotrexate self-injection. (N = 27)BeforeAfter the 1stself-injectionAfter the 2end self-injectionpVAS reluctance (0-10mm)6,5 ± 3,62,2 ± 2,91,0 ± 2,3<0,0001VAS difficulty (0-10mm)7,5 ± 2,62,5 ± 2,71,0 ± 1,9<0,0001VAS satisfaction (0-10mm)-8,9 ± 1,89,5 ± 1,50,002Conclusion:This study suggests the effectiveness of a methotrexate self-injection patient education session in RA patients. It also highlights the value of patient education in rheumatologic care. A large-scale study is necessary to better interpret and complete these preliminary results from this pilot study.Disclosure of Interests:None declared


Author(s):  
Chang Liu ◽  
Rui Cheng ◽  
Jiazhuang Guo ◽  
Ge Li ◽  
He Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document