Optimization of Clot Formation Methodology for Assessment of Neurothrombectomy Devices in Large Animal Thrombectomy Models

Author(s):  
Cedric Jimenez ◽  
Igor Polyakov ◽  
Leigh Kleinert ◽  
André Nelson ◽  
Mark Smith

Abstract Neurothrombectomy devices are commonly evaluated for potential clinical success in porcine models of neurothromboembolism. The majority of preclinical evaluations for these devices are performed in the vasculature of swine or dog utilizing clots created ex vivo. This investigation was conducted to develop a faster, more reliable method for creating clots ex vivo for model development. Neurothrombectomy devices are designed to perform recanalization of arterial occlusions that cause acute ischemic stroke [1]. Recanalization can be achieved via clot disruption, aspiration, or retrieval using one or more mechanical devices. In order to evaluate these devices in vivo, a fast and reliable method for creating and delivering clots to a desired artery, thereby simulating a target site for neurothrombectomy, is essential. Two types of clot analogs (soft or firm) were created using two different methods in order to compare both their mechanical properties and their ability to reliably occlude selected arteries. Utilizing both methods, pre-formed clots were qualitatively compared in vitro to evaluate elasticity, stiffness, and functionality of delivery through a catheter. These evaluations were performed prior to in vivo assessment of the effectiveness of the analogs occlusion of selected arterial vasculature.

2020 ◽  
Vol 6 (3) ◽  
pp. eaay0065 ◽  
Author(s):  
Ritu Raman ◽  
Tiffany Hua ◽  
Declan Gwynne ◽  
Joy Collins ◽  
Siddartha Tamang ◽  
...  

Triggerable materials capable of being degraded by selective stimuli stand to transform our capacity to precisely control biomedical device activity and performance while reducing the need for invasive interventions. Here, we describe the development of a modular and tunable light-triggerable hydrogel system capable of interfacing with implantable devices. We apply these materials to two applications in the gastrointestinal (GI) tract: a bariatric balloon and an esophageal stent. We demonstrate biocompatibility and on-demand triggering of the material in vitro, ex vivo, and in vivo. Moreover, we characterize performance of the system in a porcine large animal model with an accompanying ingestible LED. Light-triggerable hydrogels have the potential to be applied broadly throughout the GI tract and other anatomic areas. By demonstrating the first use of light-degradable hydrogels in vivo, we provide biomedical engineers and clinicians with a previously unavailable, safe, dynamically deliverable, and precise tool to design dynamically actuated implantable devices.


2015 ◽  
Vol 27 (1) ◽  
pp. 185
Author(s):  
S. Maffei ◽  
G. Galeati ◽  
G. Pennarossa ◽  
T. A. L. Brevini ◽  
G. Gandolfi

The different structures of a mammalian ovary require complex 3-dimensional interactions to function properly. It is difficult to access the ovary in vivo and to study its physiology in vitro, it is necessary to dissect its different parts and culture them individually. Although informative, this approach prevents the understanding of the role played by their interactions. Perfusion systems are available for ovaries of laboratory animals while organs of larger species have been maintained in culture only for a few hours. This has prompted us to develop a system that can preserve the function of a whole sheep ovary for a few days ex vivo so that it is available for analysis in controlled conditions. Twenty-four sheep ovaries were collected at the local abattoir; 18 were assigned randomly to 3 experimental groups (media A, B, and C) and 6 were immediately fixed in 10% formaldehyde and used as fresh controls. Whole ovaries were cultured for up to 4 days using a semi-open perfusion system. Organs were perfused through the ovarian artery, at a flow rate of 1.5 mL min–1 with basal medium (M199, 25 mM HEPES, 2 mM l-glutamine and 100 µg mL–1 antibiotic-antimycotic solution) supplemented with 0.4% fatty acid free BSA (medium A); or 0.4% BSA heat shock fraction (medium B); or 10% FBS, 50 ng mL–1 IGF-1, and 50 mg bovine insulin (medium C). Ovaries were stimulated with FSH (Folltropin®-V, Bioniche Animal Health Inc., Belleville, Ontario, Canada) changing medium in a pulsatile manner (1 mg mL–1 for 2 h; 0.5 mg mL–1 for 2 h; 0 mg mL–1 for 20 h), with the same cycle repeated each day of culture. At every change, aliquots were collected for oestradiol (E2) and progesterone (P4) quantification. After culture, ovaries were examined for follicular morphology, cell proliferation, and apoptotic rate. Statistical analysis was performed using one-way ANOVA (SPSS 20, IBM, Armonk, NY, USA). In media A and B, all morphological parameters showed a small but significant decrease compared to fresh control, only after 3 days of culture. The different BSA in medium B did not affect follicle morphology but significantly increased cell proliferation (medium A, 28.59 ± 3.26%; medium B, 32.04 ± 2.67%) and decreased apoptosis (medium A, 32.51 ± 5.92%; medium B, 24.55 ± 2.55%). In both media, steroid concentration increased after FSH pulses (E2 range 1.95–10.50 pg mL–1; P4 range 0.34–3.08 ng mL–1), reaching levels similar to those measurable in peripheral plasma. The presence of FBS, IGF-1, and insulin in medium C allowed extension of the culture period to 4 days with a percentage of intact follicles comparable to that observed after 3 days in media A and B. Moreover, proliferation rates were comparable to fresh controls. Steroid pattern changed with P4 values dropping close to zero (range 0.03–1.18 ng mL–1) and E2 level (range 23.59–94.98 pg mL–1) increasing 10-fold, achieving a concentration similar to that measured in the ovarian vein around oestrous. Our data indicate that it is possible to support viability of large animal whole ovaries for up to 4 days, providing a physiologically relevant model for studying ovarian functions in vitro. Research was supported by AIRC IG 10376 and by the Carraresi Foundation.


2019 ◽  
Vol 25 (2) ◽  
pp. 127-136
Author(s):  
Juliana Maynard ◽  
Philippa Hart

Lack of efficacy and poor safety outcomes are deemed to be the greatest causes of clinical failure of novel therapeutics. The use of biomarkers that give accurate information on target engagement, providing confidence that pharmacological activity in the target organ is being achieved, is key in optimizing clinical success. Without a measurement of target engagement, it can be very difficult to discern the basis for any lack of efficacy of a drug molecule within the pharmaceutical industry. Target engagement can be measured in both an in vitro and in vivo setting, and in recent years imaging measurements have been used frequently in drug discovery and development to assess target engagement and receptor occupancy in both human and animal models. From this perspective, we assess and look at the advancements in both in vivo and ex vivo imaging to demonstrate the enormous potential that imaging has as an application to provide a greater understanding of target engagement with a correlative therapeutic impact.


TECHNOLOGY ◽  
2014 ◽  
Vol 02 (02) ◽  
pp. 118-132 ◽  
Author(s):  
Yu "Winston" Wang ◽  
Altaz Khan ◽  
Madhura Som ◽  
Danni Wang ◽  
Ye Chen ◽  
...  

Multiplexed surface-enhanced Raman scattering (SERS) nanoparticles (NPs) offer the potential for rapid molecular phenotyping of tissues, thereby enabling accurate disease detection as well as patient stratification to guide personalized therapies or to monitor treatment outcomes. The clinical success of molecular diagnostics based on SERS NPs would be facilitated by the ability to accurately identify tissue biomarkers under time-constrained staining and detection conditions with a portable device. In vitro, ex vivo and in vivo experiments were performed to optimize the technology and protocols for the rapid detection (0.1-s integration time) of multiple cell-surface biomarkers with a miniature fiber-optic spectral-detection probe following a brief (5 min) topical application of SERS NPs on tissues. Furthermore, we demonstrate that the simultaneous detection and ratiometric quantification of targeted and nontargeted NPs allows for an unambiguous assessment of molecular expression that is insensitive to nonspecific variations in NP concentrations.


Microbiology ◽  
2020 ◽  
Vol 166 (12) ◽  
pp. 1171-1180 ◽  
Author(s):  
Esther Sweeney ◽  
Akshay Sabnis ◽  
Andrew M. Edwards ◽  
Freya Harrison

In vivo biofilms cause recalcitrant infections with extensive and unpredictable antibiotic tolerance. Here, we demonstrate increased tolerance of colistin by Pseudomonas aeruginosa when grown in medium that mimics cystic fibrosis (CF) sputum versus standard medium in in vitro biofilm assays, and drastically increased tolerance when grown in an ex vivo CF model versus the in vitro assay. We used colistin conjugated to the fluorescent dye BODIPY to assess the penetration of the antibiotic into ex vivo biofilms and showed that poor penetration partly explains the high doses of drug necessary to kill bacteria in these biofilms. The ability of antibiotics to penetrate the biofilm matrix is key to their clinical success, but hard to measure. Our results demonstrate both the importance of reduced entry into the matrix in in vivo-like biofilm, and the tractability of using a fluorescent tag and benchtop fluorimeter to assess antibiotic entry into biofilms. This method could be a relatively quick, cheap and useful addition to diagnostic and drug development pipelines, allowing the assessment of drug entry into biofilms, in in vivo-like conditions, prior to more detailed tests of biofilm killing.


EP Europace ◽  
2020 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
B Candemir ◽  
E Baskovski ◽  
K Esenboga ◽  
H Yorgun ◽  
K Aytemir ◽  
...  

Abstract Introduction Certain arrythmias, particularly of ventricular origin, necessitate deep lesions in order to achieve clinical success. The introduction of irrigated-tip radiofrequency (RF) catheters has allowed creation of deeper lesions and has decreased char formation. Although normal saline has been used as a standard solution, recent observations have suggested less ionic solutions may increase lesion depth. In this in-vitro study we aimed to characterize lesions created by irrigated-tip RF catheters using standard normal saline(NS), half-normal saline (HNS), and HNS-%2.5Dextrose (HNS-DEX/2) combination solutions. METHODS Bovine myocardium was placed firstly in ringer-lactate bath. Using irrigated-tip RF catheter ablation lesions were created serially using 30, 40, 50, 60, 70Watts with NS, HNS and HNS-DEX/2 as irrigation solutions. Lesion depths, steam pops and impedance drops were measured. Subsequently the experiment was repeated in normal saline bath. RESULTS Both HNS-DEX/2 and HNS irrigation solutions increase lesion depths when compared to normal saline (Table 1, Figure 1). Steam pops were more common and earlier with HNS-DEX/2 and HNS. DISCUSSION AND CONCLUSION Our findings suggest that less ionic irrigation solutions lead to increased lesion depths using similar RF power. If confirmed in-vivo, HNS and, particularly, HNS-DEX/2 as irrigation solution may increase ablation success for intramural/deep myocardial arrhythmic foci. Additionally, studies to assess safety of this strategy are necessary as intuitively deeper lesions may lead to more complications. Table 1 Irrigation Solution/Bath solution 30W/30ml(Lesion depth mm)(Impedance drop) 40W/30ml(Lesion depth mm)(Impedance drop) 50W/30ml(Lesion depth mm)(Impedance drop) 60W/30ml(Lesion depth mm)(Impedance drop) 70W/30ml(Lesion depth mm)(Impedance drop) HNS+%2.5D / Ringer Lactate 470->61 4.583->63 5.074->62SP+(32s) 6.080->66SP+(27s) 7.577->65SP+(26s) HNS/ Ringer Lactate 3.590->65 4.580->63SP+(34s) 5.073->59SP+(33s) 5.580->56SP+(28s) 6.583->64SP+(22s) NS/ Ringer Lactate 3.077->60 472->59 4.576->61 5.081->56 674->55 SP+(30s) HNS+%2.5D/Normal saline 3.573->67 598->63 5.573->58SP+(28s) 697->76SP+(26s) 7.570->58SP (25s) HNS/Normal saline 3.563->58 4.066->52 4.567->52 5.575->52 788->60SP+(28s) NS/Normal saline 2.566->58 3.063->52 4.073->58 5.077->55 5.568->44 Lesions created by irrigated tip radiofrequency catheter with bovine myocardium Abstract Figure 1


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 593
Author(s):  
Kirk A. Taylor ◽  
Michael Emerson

European and UK legislation requires all animal procedures to be conducted with consideration to reduction, refinement and replacement. In this review, 3Rs developments are discussed in the field of platelet biology and thromboembolism. Platelet research requires the use of animal models, and mice are widely used in the field. When working in vitro, conventional light transmission techniques have been scaled down allowing reduction in animal numbers. In vivo, vascular injury models are widely used and work is ongoing to develop ex vivo approaches that use fewer animals. Thromboembolic mortality models, which inflict considerable pain and suffering, have also been used widely. A published and characterised refinement of this mortality model allows real-time monitoring of radiolabelled platelets under general anaesthesia and reduces both the severity level and the numbers of mice used in a typical experiment. This technique is more sensitive than the mortality approach and has opened up new avenues of research, which would not have been feasible by using death as an end-point. To drive uptake of real-time monitoring, a more simplistic approach has been developed involving micro-sampling and cell counting. Thromboembolic mortality models should therefore be considered obsolete due to the emergence of 3Rs models with improved scientific outcomes and that can be implemented relatively easily.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Gemma Vilahur ◽  
Teresa Padro ◽  
Lina Badimon

Atherosclerosis and its thrombotic complications are responsible for remarkably high numbers of deaths. The combination ofin vitro, ex vivo, andin vivoexperimental approaches has largely contributed to a better understanding of the mechanisms underlying the atherothrombotic process. Indeed, different animal models have been implemented in atherosclerosis and thrombosis research in order to provide new insights into the mechanisms that have already been outlined in isolated cells and protein studies. Yet, although no model completely mimics the human pathology, large animal models have demonstrated better suitability for translation to humans. Indeed, direct translation from mice to humans should be taken with caution because of the well-reported species-related differences. This paper provides an overview of the availableatherothrombotic-likeanimal models, with a particular focus on large animal models of thrombosis and atherosclerosis, and examines their applicability for translational research purposes as well as highlights species-related differences with humans.


2020 ◽  
Author(s):  
Esther Sweeney ◽  
Akshay Sabnis ◽  
Andrew M. Edwards ◽  
Freya Harrison

AbstractIn vivo biofilms cause recalcitrant infections with extensive and unpredictable antibiotic tolerance. Here, we demonstrate increased tolerance of colistin by Pseudomonas aeruginosa when grown in cystic fibrosis-mimicking medium versus standard medium in in vitro biofilm assays, and drastically increased tolerance when grown in an ex vivo CF model versus the in vitro assay. We used colistin conjugated to the fluorescent dye BODIPY to assess the penetration of the antibiotic into ex vivo biofilms and showed that poor penetration partly explains the high doses of drug necessary to kill bacteria in these biofilms. The ability of antibiotics to penetrate the biofilm matrix is key to their clinical success, but hard to measure. Our results demonstrate both the importance of reduced entry into the matrix in in vivo-like biofilm, and the tractability of using a fluorescent tag and benchtop fluorimeter to assess antibiotic entry into biofilms. This method could be a relatively quick, cheap and useful addition to diagnostic and R&D pipelines, allowing the assessment of drug entry into biofilms, in in vivo-like conditions, prior to more detailed tests of biofilm killing.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Sign in / Sign up

Export Citation Format

Share Document