scholarly journals Light-degradable hydrogels as dynamic triggers for gastrointestinal applications

2020 ◽  
Vol 6 (3) ◽  
pp. eaay0065 ◽  
Author(s):  
Ritu Raman ◽  
Tiffany Hua ◽  
Declan Gwynne ◽  
Joy Collins ◽  
Siddartha Tamang ◽  
...  

Triggerable materials capable of being degraded by selective stimuli stand to transform our capacity to precisely control biomedical device activity and performance while reducing the need for invasive interventions. Here, we describe the development of a modular and tunable light-triggerable hydrogel system capable of interfacing with implantable devices. We apply these materials to two applications in the gastrointestinal (GI) tract: a bariatric balloon and an esophageal stent. We demonstrate biocompatibility and on-demand triggering of the material in vitro, ex vivo, and in vivo. Moreover, we characterize performance of the system in a porcine large animal model with an accompanying ingestible LED. Light-triggerable hydrogels have the potential to be applied broadly throughout the GI tract and other anatomic areas. By demonstrating the first use of light-degradable hydrogels in vivo, we provide biomedical engineers and clinicians with a previously unavailable, safe, dynamically deliverable, and precise tool to design dynamically actuated implantable devices.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ling Li ◽  
Mohamad I. Itani ◽  
Kevan J. Salimian ◽  
Yue Li ◽  
Olaya Brewer Gutierrez ◽  
...  

AbstractGastrointestinal (GI) strictures are difficult to treat in a variety of disease processes. Currently, there are no Food and Drug Administration (FDA) approved drugs for fibrosis in the GI tract. One of the limitations to developing anti-fibrotic drugs has been the lack of a reproducible, relatively inexpensive, large animal model of fibrosis-driven luminal stricture. This study aimed to evaluate the feasibility of creating a model of luminal GI tract strictures. Argon plasma coagulation (APC) was applied circumferentially in porcine esophagi in vivo. Follow-up endoscopy (EGD) was performed at day 14 after the APC procedure. We noted high grade, benign esophageal strictures (n = 8). All 8 strictures resembled luminal GI fibrotic strictures in humans. These strictures were characterized, and then successfully dilated. A repeat EGD was performed at day 28 after the APC procedure and found evidence of recurrent, high grade, fibrotic, strictures at all 8 locations in all pigs. Pigs were sacrificed and gross and histologic analyses performed. Histologic examination showed extensive fibrosis, with significant collagen deposition in the lamina propria and submucosa, as well as extensive inflammatory infiltrates within the strictures. In conclusion, we report a porcine model of luminal GI fibrotic stricture that has the potential to assist with developing novel anti-fibrotic therapies as well as endoscopic techniques to address recurring fibrotic strictures in humans.


2015 ◽  
Vol 27 (1) ◽  
pp. 185
Author(s):  
S. Maffei ◽  
G. Galeati ◽  
G. Pennarossa ◽  
T. A. L. Brevini ◽  
G. Gandolfi

The different structures of a mammalian ovary require complex 3-dimensional interactions to function properly. It is difficult to access the ovary in vivo and to study its physiology in vitro, it is necessary to dissect its different parts and culture them individually. Although informative, this approach prevents the understanding of the role played by their interactions. Perfusion systems are available for ovaries of laboratory animals while organs of larger species have been maintained in culture only for a few hours. This has prompted us to develop a system that can preserve the function of a whole sheep ovary for a few days ex vivo so that it is available for analysis in controlled conditions. Twenty-four sheep ovaries were collected at the local abattoir; 18 were assigned randomly to 3 experimental groups (media A, B, and C) and 6 were immediately fixed in 10% formaldehyde and used as fresh controls. Whole ovaries were cultured for up to 4 days using a semi-open perfusion system. Organs were perfused through the ovarian artery, at a flow rate of 1.5 mL min–1 with basal medium (M199, 25 mM HEPES, 2 mM l-glutamine and 100 µg mL–1 antibiotic-antimycotic solution) supplemented with 0.4% fatty acid free BSA (medium A); or 0.4% BSA heat shock fraction (medium B); or 10% FBS, 50 ng mL–1 IGF-1, and 50 mg bovine insulin (medium C). Ovaries were stimulated with FSH (Folltropin®-V, Bioniche Animal Health Inc., Belleville, Ontario, Canada) changing medium in a pulsatile manner (1 mg mL–1 for 2 h; 0.5 mg mL–1 for 2 h; 0 mg mL–1 for 20 h), with the same cycle repeated each day of culture. At every change, aliquots were collected for oestradiol (E2) and progesterone (P4) quantification. After culture, ovaries were examined for follicular morphology, cell proliferation, and apoptotic rate. Statistical analysis was performed using one-way ANOVA (SPSS 20, IBM, Armonk, NY, USA). In media A and B, all morphological parameters showed a small but significant decrease compared to fresh control, only after 3 days of culture. The different BSA in medium B did not affect follicle morphology but significantly increased cell proliferation (medium A, 28.59 ± 3.26%; medium B, 32.04 ± 2.67%) and decreased apoptosis (medium A, 32.51 ± 5.92%; medium B, 24.55 ± 2.55%). In both media, steroid concentration increased after FSH pulses (E2 range 1.95–10.50 pg mL–1; P4 range 0.34–3.08 ng mL–1), reaching levels similar to those measurable in peripheral plasma. The presence of FBS, IGF-1, and insulin in medium C allowed extension of the culture period to 4 days with a percentage of intact follicles comparable to that observed after 3 days in media A and B. Moreover, proliferation rates were comparable to fresh controls. Steroid pattern changed with P4 values dropping close to zero (range 0.03–1.18 ng mL–1) and E2 level (range 23.59–94.98 pg mL–1) increasing 10-fold, achieving a concentration similar to that measured in the ovarian vein around oestrous. Our data indicate that it is possible to support viability of large animal whole ovaries for up to 4 days, providing a physiologically relevant model for studying ovarian functions in vitro. Research was supported by AIRC IG 10376 and by the Carraresi Foundation.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 200-200 ◽  
Author(s):  
Thomas Wechsler ◽  
Kathleen E. Meyer ◽  
S. Kaye Spratt ◽  
Judith Greengard ◽  
Yolanda Santiago ◽  
...  

Abstract Hemophilia is an attractive target for gene therapy, since activity levels as low as 1% to 2% of normal are beneficial and levels of ~5% prevent spontaneous bleeding. Our goal was to provide a single treatment that permanently enables hepatic production of therapeutic levels of hFIX activity to decrease or potentially eliminate the need for prophylactic treatment in hemophilia B patients. We performed targeted in vivo genome editing using 1) two zinc finger nucleases (ZFNs) targeting intron 1 of the albumin locus, and 2) a human F9 donor template construct. The ZFNs and donor template are encoded on separate hepatotropic adeno-associated virus serotype 2/6 (AAV2/6) vectors injected intravenously, resulting in targeted insertion of a corrected copy of the hF9 gene into the albumin locus in a proportion of liver hepatocytes. The albumin locus was selected as a "safe harbor" as production of this most abundant plasma protein exceeds 10 g/day, and moderate reductions in those levels are well-tolerated. These genome edited hepatocytes produce normal hFIX in therapeutic quantities, rather than albumin, driven by the highly active albumin enhancer/promoter, to treat hemophilia B; the genetic modification is expected to be sustained even in the face of hepatocyte turnover, making this approach attractive for treating young children with hemophilia before the appearance of significant organ damage. Transformed and primary human hepatocytes transduced in vitro with AAV2/6 encoding human albumin ZFNs and a promoterless hF9 transgene were shown to secrete hFIX. Extensive molecular analyses demonstrated that this was due to targeted integration of the hF9 transgene at the albumin locus and splicing of this gene into the albumin transcript. By employing AAV2/6 delivery of murine-specific ZFNs in vivo, stable levels of hFIX were observed in blood of mice injected with the albumin ZFNs and hF9 transgene donor. C57BL/6 mice were administered vehicle (n=20) or AAV2/6 vectors (n=25) encoding mouse surrogate reagents at 1.0 x1013 vector genome (vg)/kg via tail vein injection. ELISA analysis of plasma hFIX in the treated mice showed peak levels of 50-1053 ng/mL that were sustained for the duration of the 6-month study. Analysis of FIX activity from mouse plasma confirmed bioactivity commensurate with expression levels. Next, we report the feasibility of this approach in non-human primates (NHPs), showing that a single intravenous co-infusion of AAV2/6 vectors encoding the NHP targeted albumin-specific ZFNs and a human F9 donor at 1.2x1013 vg/kg (n=5/group) resulted in >50 ng/mL (>1% of normal) in this large animal model. The use of higher AAV2/6 doses (up to 1.5x1014 vg/kg) yielded plasma hFIX levels up to 1000 ng/ml (or 20% of normal) in several animals and up to 2000 ng/ml (or 50% of normal) in a single animal, for the duration of the study (3 months). The treatment was well tolerated in mice and NHPs, with no significant toxicological findings related to AAV2/6 ZFN + donor treatment in either species at therapeutic doses. Together, these data support a clinical trial to determine if a single co-administration of ZFN and donor AAV vectors is sufficient to enable therapeutic and potentially lifelong production of the clotting factor for the treatment of Hemophilia B. Disclosures Wechsler: Sangamo BioSciences: Employment. Meyer:Sangamo Biosciences Inc: Employment. Spratt:Sangamo Biosciences Inc: Employment. Greengard:Sangamo Biosciences Inc: Employment. Santiago:Sangamo Biosciences Inc: Employment. Sproul:Sangamo Biosciences Inc: Employment. Surosky:Sangamo Biosciences Inc: Employment. Paschon:Sangamo Biosciences Inc: Employment. Dubois-Stringfellow:Sangamo Biosciences Inc: Employment. Ando:Sangamo Biosciences Inc: Employment. Nichol:Sangamo Biosciences Inc: Employment. Rebar:Sangamo BioSciences: Employment. Holmes:Sangamo BioSciences: Employment.


Reproduction ◽  
2018 ◽  
Vol 155 (5) ◽  
pp. 433-445 ◽  
Author(s):  
Stefania Muzzachi ◽  
Lorenzo Guerra ◽  
Nicola Antonio Martino ◽  
Maria Favia ◽  
Giuseppe Punzi ◽  
...  

Sperm motility, a feature essential forin vivofertilization, is influenced by intracellular pH (pHi) homeostasis. Several mechanisms are involved in pHiregulation, among which sodium–hydrogen exchangers (NHEs), a family of integral transmembrane proteins that catalyze the exchange of Na+for H+across lipid bilayers. A preliminary characterization of NHE activity and kinetic parameters, followed by analysis of the expression and localization of the protein in ram spermatozoa was performed. NHE activity showed an apparentKmfor external Na+of 17.61 mM. Immunoblotting revealed a molecular mass of 85 kDa. Immunolocalization pattern showed some species-specific aspects, such as positive labeling at the equatorial region of the sperm head. Cariporide, a selective NHE1 inhibitor, significantly reduced pHirecovery (85%). Similarly, exposure to cariporide significantly inhibited different motility parameters, including those related to sperm capacitation.In vitrofertilization (IVF) was not affected by cariporide, possibly due to the non-dramatic, although significant, drop in motility and velocity parameters or due to prolonged exposure during IVF, which may have caused progressive loss of its inhibitory effect. In conclusion, this is the first study documenting, in a large animal model (sheep) of well-known translational relevance, a direct functional role of NHE on sperm pHiand motility. The postulated specificity of cariporide toward isoform 1 of the Na+/H+exchanger seems to suggest that NHE1 may contribute to the observed effects on sperm cell functionality.


2018 ◽  
Author(s):  
Daniel R. Principe ◽  
Nana Haahr Overgaard ◽  
Alex J. Park ◽  
Andrew M. Diaz ◽  
Carolina Torres ◽  
...  

AbstractAlthough survival has improved in recent years, the prognosis of patients with advanced pancreatic ductal adenocarcinoma (PDAC) remains poor. Despite substantial differences in anatomy, physiology, genetics, and metabolism, the overwhelming majority of preclinical testing relies on transgenic mice. Hence, while mice have allowed for tremendous advances in cancer biology, they have been a poor predictor of drug performance/toxicity in the clinic. Given the greater similarity of sus scrofa pigs to humans, we engineered transgenic sus scrofa expressing a LSL-KRASG12D-TP53R167H cassette. By applying Adeno-Cre to pancreatic duct cells in vitro, cells self-immortalized and established tumors in immunocompromised mice. When Adeno-Cre was administered to the main pancreaticduct in vivo, pigs developed extensive PDAC at the injection site hallmarked by excessive proliferation and desmoplastic stroma. This serves as the first large animal model of pancreatic carcinogenesis, and may allow for insight into new avenues of translational research not before possible in rodents.


Author(s):  
Cedric Jimenez ◽  
Igor Polyakov ◽  
Leigh Kleinert ◽  
André Nelson ◽  
Mark Smith

Abstract Neurothrombectomy devices are commonly evaluated for potential clinical success in porcine models of neurothromboembolism. The majority of preclinical evaluations for these devices are performed in the vasculature of swine or dog utilizing clots created ex vivo. This investigation was conducted to develop a faster, more reliable method for creating clots ex vivo for model development. Neurothrombectomy devices are designed to perform recanalization of arterial occlusions that cause acute ischemic stroke [1]. Recanalization can be achieved via clot disruption, aspiration, or retrieval using one or more mechanical devices. In order to evaluate these devices in vivo, a fast and reliable method for creating and delivering clots to a desired artery, thereby simulating a target site for neurothrombectomy, is essential. Two types of clot analogs (soft or firm) were created using two different methods in order to compare both their mechanical properties and their ability to reliably occlude selected arteries. Utilizing both methods, pre-formed clots were qualitatively compared in vitro to evaluate elasticity, stiffness, and functionality of delivery through a catheter. These evaluations were performed prior to in vivo assessment of the effectiveness of the analogs occlusion of selected arterial vasculature.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 755
Author(s):  
Katarzyna Kornicka-Garbowska ◽  
Lynda Bourebaba ◽  
Michael Röcken ◽  
Krzysztof Marycz

Despite multiple research studies regarding metabolic syndrome and diabetes, the full picture of their molecular background and pathogenies remains elusive. The latest studies revealed that sex hormone-binding globulin (SHBG)—a serum protein released mainly by the liver—may participate in metabolic dysregulation, as its low serum level correlates with a risk for obesity, metabolic syndrome, and diabetes. Yet, the molecular phenomenon linking SHBG with these disorders remains unclear. In the presented study, we investigate how exogenous SHBG affects metabolically impaired hepatocytes with special attention to endoplasmic reticulum stress (ER stress) and lipid metabolism both in vitro and ex vivo. For that reason, palmitate-treated HepG2 cells and liver tissue samples collected post mortem were cultured in the presence of 50 nM and 100 nM SHBG. We found that SHBG protects against ER stress development and its progression. We have found that SHBG decreased the expression levels of inositol-requiring enzyme 1 (IRE1α), activating transcription factor 6 (ATF6), DNA damage-inducible transcript 3 (CHOP), and immunoglobulin heavy chain-binding protein (BIP). Furthermore, we have shown that it regulates lipolytic gene expression ex vivo. Additionally, herein, we deliver a novel large-animal model to study SHBG in translational research. Our data provide new insights into the cellular and molecular mechanisms by which SHBG modulates hepatocyte metabolism and offer a new experimental approach to study SHBG in human diseases.


2018 ◽  
Author(s):  
Neeley Remmers ◽  
Jesse L. Cox ◽  
James A. Grunkemeyer ◽  
Shruthi Aravind ◽  
Christopher K. Arkfeld ◽  
...  

AbstractBackground. A large animal model of pancreatic cancer would permit development of diagnostic and interventional technologies not possible in murine models, and also would provide a more biologically-relevant platform for penultimate testing of novel therapies, prior to human testing. Here, we describe our initial studies in the development of an autochthonous, genetically-defined, large animal model of pancreatic cancer, using immunocompetent pigs.Methods. Primary pancreatic epithelial cells were isolated from pancreatic duct of domestic pigs; epithelial origin was confirmed with immunohistochemistry. Three transformed cell lines subsequently were generated from these primary cells using expression of oncogenic KRAS and dominant negative p53, with/without knockdown of p16 and SMAD4. We tested these cell lines using in vitro and in vivo assays of transformation and tumorigenesis.Results. The transformed cell lines outperformed the primary cells in terms proliferation, population doubling time, soft agar growth, 2D migration, and Matrigel invasion, with the greatest differences observed when all four genes (KRAS, p53, p16, and SMAD4) were targeted. All three transformed cell lines grew tumors when injected subcutaneously in nude mice, demonstrating undifferentiated morphology, mild desmoplasia, and staining for both epithelial and mesenchymal markers. Injection into the pancreas of nude mice resulted in distant metastases, particularly when all four genes were targeted.Conclusions. Tumorigenic porcine pancreatic cell lines were generated. Inclusion of four genetic “hits” (KRAS, p53, p16, and SMAD4) appeared to produce the best results in our in vitro and in vivo assays. The next step will be to perform autologous or syngeneic implantation of these cell lines into the pancreas of immunocompetent pigs. We believe that the resultant large animal model of pancreatic cancer could supplement existing murine models, thus improving preclinical research on diagnostic, interventional, and therapeutic technologies.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Gemma Vilahur ◽  
Teresa Padro ◽  
Lina Badimon

Atherosclerosis and its thrombotic complications are responsible for remarkably high numbers of deaths. The combination ofin vitro, ex vivo, andin vivoexperimental approaches has largely contributed to a better understanding of the mechanisms underlying the atherothrombotic process. Indeed, different animal models have been implemented in atherosclerosis and thrombosis research in order to provide new insights into the mechanisms that have already been outlined in isolated cells and protein studies. Yet, although no model completely mimics the human pathology, large animal models have demonstrated better suitability for translation to humans. Indeed, direct translation from mice to humans should be taken with caution because of the well-reported species-related differences. This paper provides an overview of the availableatherothrombotic-likeanimal models, with a particular focus on large animal models of thrombosis and atherosclerosis, and examines their applicability for translational research purposes as well as highlights species-related differences with humans.


Sign in / Sign up

Export Citation Format

Share Document