Application of Sliding Mode Control to Swarms Under Conflict

Author(s):  
Rudy Cepeda-Gomez ◽  
Nejat Olgac ◽  
Daniel A. Sierra

A robustizing Sliding Mode Control (SMC) strategy is implemented on two competing multi-agent swarms, called pursuers and evaders. Newtonian dynamic models are considered, which include drag forces as well as the inter-agent attraction/repulsion forces. The proposed control achieves the stability and the capture of the evaders by the pursuers despite the uncertainties in the evader behavior. The group pursuit is conceived in two phases: the approach phase during which the two swarms act like two individuals; and the assigned pursuit phase when each pursuer is assigned to an evader. Furthermore, we take into account a turning action for the evaders, which adds to their agility. This property is considered as a part of the uncertainty in the dynamics. The control parameters are separately studied to assess their influences on the pursuit.

2021 ◽  
pp. 002029402110211
Author(s):  
Tao Chen ◽  
Damin Cao ◽  
Jiaxin Yuan ◽  
Hui Yang

This paper proposes an observer-based adaptive neural network backstepping sliding mode controller to ensure the stability of switched fractional order strict-feedback nonlinear systems in the presence of arbitrary switchings and unmeasured states. To avoid “explosion of complexity” and obtain fractional derivatives for virtual control functions continuously, the fractional order dynamic surface control (DSC) technology is introduced into the controller. An observer is used for states estimation of the fractional order systems. The sliding mode control technology is introduced to enhance robustness. The unknown nonlinear functions and uncertain disturbances are approximated by the radial basis function neural networks (RBFNNs). The stability of system is ensured by the constructed Lyapunov functions. The fractional adaptive laws are proposed to update uncertain parameters. The proposed controller can ensure convergence of the tracking error and all the states remain bounded in the closed-loop systems. Lastly, the feasibility of the proposed control method is proved by giving two examples.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 353
Author(s):  
Ligia Munteanu ◽  
Dan Dumitriu ◽  
Cornel Brisan ◽  
Mircea Bara ◽  
Veturia Chiroiu ◽  
...  

The purpose of this paper is to study the sliding mode control as a Ricci flow process in the context of a three-story building structure subjected to seismic waves. The stability conditions result from two Lyapunov functions, the first associated with slipping in a finite period of time and the second with convergence of trajectories to the desired state. Simulation results show that the Ricci flow control leads to minimization of the displacements of the floors.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Junbiao Guan ◽  
Kaihua Wang

A new fractional-order chaotic system is addressed in this paper. By applying the continuous frequency distribution theory, the indirect Lyapunov stability of this system is investigated based on sliding mode control technique. The adaptive laws are designed to guarantee the stability of the system with the uncertainty and external disturbance. Moreover, the modified generalized projection synchronization (MGPS) of the fractional-order chaotic systems is discussed based on the stability theory of fractional-order system, which may provide potential applications in secure communication. Finally, some numerical simulations are presented to show the effectiveness of the theoretical results.


Author(s):  
Ligia Munteanu ◽  
Dan Dumitriu ◽  
Cornel Brisan ◽  
Mircea Bara ◽  
Veturia Chiroiu ◽  
...  

The purpose of this paper is to study the sliding mode control as a Ricci flow process in the context of a three-story building structure subjected to seismic waves. The stability conditions result from two Lyapunov- functions, the first associated with slipping in a finite period of time, and the second with convergence of trajectories to the desired state. Simulation results show that the Ricci flow control leads to the minimization of the displacements of the floors. 3D Ricci solitons projection via a semi-conformal mapping to a surface is also studied.


Author(s):  
Samir Ladaci ◽  
Karima Rabah ◽  
Mohamed Lashab

This chapter investigates a new control design methodology for the synchronization of fractional-order Arneodo chaotic systems using a fractional-order sliding mode control configuration. This class of nonlinear fractional-order systems shows a chaotic behavior for a set of model parameters. The stability analysis of the proposed fractional-order sliding mode control law is performed by means of the Lyapunov stability theory. Simulation examples on fractional-order Arneodo chaotic systems synchronization are provided in presence of disturbances and noises. These results illustrate the effectiveness and robustness of this control design approach.


Sign in / Sign up

Export Citation Format

Share Document