A Model-Based Predictive Control Approach for a Building Cooling System With Ice Storage

Author(s):  
Vahid R. Dehkordi ◽  
José A. Candanedo

This paper presents a model predictive control (MPC) algorithm designed for the cooling system of a small commercial building under a time-dependent electricity price profile. The proposed approach includes a problem formulation in terms of cooling power, a variable-length prediction horizon and the consideration of the equipment duty cycle as a constraint in the optimization algorithm. The cooling system is equipped with an ice bank for thermal energy storage. A simple linear building thermal model is used to calculate the required amount of cooling power to maintain thermal comfort. The MPC algorithm uses this information to find the optimal operating points for the chiller and the ice bank to minimize the electric energy cost. The results of the MPC algorithm are compared against those of the reactive rule-based control algorithm currently in use in the building.

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Gaurav Singh ◽  
Ranjan Das

In air-conditioning, strategy of decoupling cooling and ventilation tasks has stimulated considerable interest in radiant cooling systems with dedicated outdoor air system (DOAS). In view of this, current paper presents a simulation study to describe energy saving potential of a solar, biogas, and electric heater powered hybrid vapor absorption chiller (VAC) based radiant cooling system with desiccant-coupled DOAS. A medium office building under warm and humid climatic condition is considered. To investigate the system under different operational strategies, energyplus simulations are done. In this study, a novel design involving solar collectors and biogas fired boiler is proposed for VAC and desiccant regeneration. Three systems are compared in terms of total electric energy consumption: conventional vapor compression chiller (VCC) based radiant cooling system with conventional VCC-DOAS, hybrid VAC-based radiant cooling system with conventional VCC-DOAS, and hybrid VAC-based radiant cooling system with desiccant-assisted VCC-DOAS. The hybrid VAC radiant cooling system and desiccant-assisted VCC-DOAS yields in 9.1% lesser energy consumption than that of the VAC radiant cooling system with conventional VCC-DOAS. Results also show that up to 13.2% energy savings can be ensured through triple-hybrid VAC radiant cooling system and desiccant-assisted VCC-DOAS as compared to that of the conventional VCC-based radiant system. The return on investment is observed to be 14.59 yr for the proposed system.


2013 ◽  
Vol 111 ◽  
pp. 1032-1045 ◽  
Author(s):  
J.A. Candanedo ◽  
V.R. Dehkordi ◽  
M. Stylianou

2001 ◽  
Vol 447 ◽  
pp. 179-225 ◽  
Author(s):  
THOMAS R. BEWLEY ◽  
PARVIZ MOIN ◽  
ROGER TEMAM

Direct numerical simulations (DNS) and optimal control theory are used in a predictive control setting to determine controls that effectively reduce the turbulent kinetic energy and drag of a turbulent flow in a plane channel at Reτ = 100 and Reτ = 180. Wall transpiration (unsteady blowing/suction) with zero net mass flux is used as the control. The algorithm used for the control optimization is based solely on the control objective and the nonlinear partial differential equation governing the flow, with no ad hoc assumptions other than the finite prediction horizon, T, over which the control is optimized.Flow relaminarization, accompanied by a drag reduction of over 50%, is obtained in some of the control cases with the predictive control approach in direct numerical simulations of subcritical turbulent channel flows. Such performance far exceeds what has been obtained to date in similar flows (using this type of actuation) via adaptive strategies such as neural networks, intuition-based strategies such as opposition control, and the so-called ‘suboptimal’ strategies, which involve optimizations over a vanishingly small prediction horizon T+ → 0. To achieve flow relaminarization in the predictive control approach, it is shown that it is necessary to optimize the controls over a sufficiently long prediction horizon T+ [gsim ] 25. Implications of this result are discussed.The predictive control algorithm requires full flow field information and is computationally expensive, involving iterative direct numerical simulations. It is, therefore, impossible to implement this algorithm directly in a practical setting. However, these calculations allow us to quantify the best possible system performance given a certain class of flow actuation and to qualify how optimized controls correlate with the near-wall coherent structures believed to dominate the process of turbulence production in wall-bounded flows. Further, various approaches have been proposed to distil practical feedback schemes from the predictive control approach without the suboptimal approximation, which is shown in the present work to restrict severely the effectiveness of the resulting control algorithm. The present work thus represents a further step towards the determination of optimally effective yet implementable control strategies for the mitigation or enhancement of the consequential effects of turbulence.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 168
Author(s):  
Abdellatif Elmouatamid ◽  
Radouane Ouladsine ◽  
Mohamed Bakhouya ◽  
Najib El Kamoun ◽  
Mohammed Khaidar ◽  
...  

The demand for electricity is increased due to the development of the industry, the electrification of transport, the rise of household demand, and the increase in demand for digitally connected devices and air conditioning systems. For that, solutions and actions should be developed for greater consumers of electricity. For instance, MG (Micro-grid) buildings are one of the main consumers of electricity, and if they are correctly constructed, controlled, and operated, a significant energy saving can be attained. As a solution, hybrid RES (renewable energy source) systems are proposed, offering the possibility for simple consumers to be producers of electricity. This hybrid system contains different renewable generators connected to energy storage systems, making it possible to locally produce a part of energy in order to minimize the consumption from the utility grid. This work gives a concise state-of-the-art overview of the main control approaches for energy management in MG systems. Principally, this study is carried out in order to define the suitable control approach for MGs for energy management in buildings. A classification of approaches is also given in order to shed more light on the need for predictive control for energy management in MGs.


Sign in / Sign up

Export Citation Format

Share Document