How to Beat Flappy Bird: A Mixed-Integer Model Predictive Control Approach

Author(s):  
Matthew Piper ◽  
Pranav Bhounsule ◽  
Krystel K. Castillo-Villar

Flappy Bird is a mobile game that involves tapping the screen to navigate a bird through a gap between pairs of vertical pipes. When the bird passes through the gap, the score increments by one and the game ends when the bird hits the floor or a pipe. Surprisingly, Flappy Bird is a very difficult game and scores in single digits are not uncommon even after extensive practice. In this paper, we create three controllers to play the game autonomously. The controllers are: (1) a manually tuned controller that flaps the bird based on a vertical set point condition; (2) an optimization-based controller that plans and executes an optimal path between consecutive tubes; (3) a model-based predictive controller (MPC). Our results showed that on average, the optimization-based controller scored highest, followed closely by the MPC, while the manually tuned controller scored the least. A key insight was that choosing a planning horizon slightly beyond consecutive tubes was critical for achieving high scores. The average computation time per iteration for the MPC was half that of optimization-based controller but the worst case time (maximum time) per iteration for the MPC was thrice that of optimization-based controller. The success of the optimization-based controller was due to the intuitive tuning of the terminal position and velocity constraints while for the MPC the important parameters were the prediction and control horizon. The MPC was straightforward to tune compared to the other two controllers. Our conclusion is that MPC provides the best compromise between performance and computation speed without requiring elaborate tuning.

2021 ◽  
Vol 5 (4) ◽  
pp. 1-26
Author(s):  
Alëna Rodionova ◽  
Yash Vardhan Pant ◽  
Connor Kurtz ◽  
Kuk Jang ◽  
Houssam Abbas ◽  
...  

Urban Air Mobility, the scenario where hundreds of manned and Unmanned Aircraft Systems (UASs) carry out a wide variety of missions (e.g., moving humans and goods within the city), is gaining acceptance as a transportation solution of the future. One of the key requirements for this to happen is safely managing the air traffic in these urban airspaces. Due to the expected density of the airspace, this requires fast autonomous solutions that can be deployed online. We propose Learning-‘N-Flying (LNF), a multi-UAS Collision Avoidance (CA) framework. It is decentralized, works on the fly, and allows autonomous Unmanned Aircraft System (UAS)s managed by different operators to safely carry out complex missions, represented using Signal Temporal Logic, in a shared airspace. We initially formulate the problem of predictive collision avoidance for two UASs as a mixed-integer linear program, and show that it is intractable to solve online. Instead, we first develop Learning-to-Fly (L2F) by combining (1) learning-based decision-making and (2) decentralized convex optimization-based control. LNF extends L2F to cases where there are more than two UASs on a collision path. Through extensive simulations, we show that our method can run online (computation time in the order of milliseconds) and under certain assumptions has failure rates of less than 1% in the worst case, improving to near 0% in more relaxed operations. We show the applicability of our scheme to a wide variety of settings through multiple case studies.


Author(s):  
Hamid Reza Fahham ◽  
Mehrdad Farid ◽  
Moosa Khooran

In this paper, time optimal trajectory tracking of redundant planar cable-suspended robots is investigated. The equations of motion of these cable robots are obtained as a system of second order differential equation in terms of path parameter s using the specified path. Besides, the bounds on the cable tensions and cable velocities are transformed into the bounds on the acceleration and velocity along the path. Assuming bang-bang control, the switching points in ṡ2−s plane are obtained. Then the cable tensions are found in terms of path parameter and, subsequently, versus time. The proposed approach is validated and the effect of the number of superfluous cables on the value of minimum time is studied. The next notable challenges include time optimal path planning of cable-suspended robots. By developing a hybrid genetic algorithm and bang-bang control approach, the minimum motion time from initial state to final one and also the corresponding path can be found. The optimum path is the one that minimizes traveling time from initial state to final one, while not exceeding the cable tensions and cable velocities limits, without collision with any obstacles.


Author(s):  
Ervina Varijki ◽  
Bambang Krismono Triwijoyo

One type of cancer that is capable identified using MRI technology is breast cancer. Breast cancer is still the leading cause of death world. therefore early detection of this disease is needed. In identifying breast cancer, a doctor or radiologist analyzing the results of magnetic resonance image that is stored in the format of the Digital Imaging Communication In Medicine (DICOM). It takes skill and experience sufficient for diagnosis is appropriate, andaccurate, so it is necessary to create a digital image processing applications by utilizing the process of object segmentation and edge detection to assist the physician or radiologist in identifying breast cancer. MRI image segmentation using edge detection to identification of breast cancer using a method stages gryascale change the image format, then the binary image thresholding and edge detection process using the latest Robert operator. Of the20 tested the input image to produce images with the appearance of the boundary line of each region or object that is visible and there are no edges are cut off, with the average computation time less than one minute.


Author(s):  
Swati Bhalaik ◽  
Ashutosh Sharma ◽  
Rajiv Kumar ◽  
Neeru Sharma

Objective: Optical networks exploit the Wavelength Division Multiplexing (WDM) to meet the ever-growing bandwidth demands of upcoming communication applications. This is achieved by dividing the enormous transmission bandwidth of fiber into smaller communication channels. The major problem with WDM network design is to find an optimal path between two end users and allocate an available wavelength to the chosen path for the successful data transmission. Methods: This communication over a WDM network is carried out through lightpaths. The merging of all these lightpaths in an optical network generates a virtual topology which is suitable for the optimal network design to meet the increasing traffic demands. But, this virtual topology design is an NP-hard problem. This paper aims to explore Mixed Integer Linear Programming (MILP) framework to solve this design issue. Results: The comparative results of the proposed and existing mathematical models show that the proposed algorithm outperforms with the various performance parameters. Conclusion: Finally, it is concluded that network congestion is reduced marginally in the overall performance of the network.


2018 ◽  
Vol 8 (10) ◽  
pp. 1978 ◽  
Author(s):  
Jaber Valinejad ◽  
Taghi Barforoshi ◽  
Mousa Marzband ◽  
Edris Pouresmaeil ◽  
Radu Godina ◽  
...  

This paper presents the analysis of a novel framework of study and the impact of different market design criterion for the generation expansion planning (GEP) in competitive electricity market incentives, under variable uncertainties in a single year horizon. As investment incentives conventionally consist of firm contracts and capacity payments, in this study, the electricity generation investment problem is considered from a strategic generation company (GENCO) ′ s perspective, modelled as a bi-level optimization method. The first-level includes decision steps related to investment incentives to maximize the total profit in the planning horizon. The second-level includes optimization steps focusing on maximizing social welfare when the electricity market is regulated for the current horizon. In addition, variable uncertainties, on offering and investment, are modelled using set of different scenarios. The bi-level optimization problem is then converted to a single-level problem and then represented as a mixed integer linear program (MILP) after linearization. The efficiency of the proposed framework is assessed on the MAZANDARAN regional electric company (MREC) transmission network, integral to IRAN interconnected power system for both elastic and inelastic demands. Simulations show the significance of optimizing the firm contract and the capacity payment that encourages the generation investment for peak technology and improves long-term stability of electricity markets.


Author(s):  
Xin-Sheng Ge ◽  
Li-Qun Chen

The motion planning problem of a nonholonomic multibody system is investigated. Nonholonomicity arises in many mechanical systems subject to nonintegrable velocity constraints or nonintegrable conservation laws. When the total angular momentum is zero, the control problem of system can be converted to the motion planning problem for a driftless control system. In this paper, we propose an optimal control approach for nonholonomic motion planning. The genetic algorithm is used to optimize the performance of motion planning to connect the initial and final configurations and to generate a feasible trajectory for a nonholonomic system. The feasible trajectory and its control inputs are searched through a genetic algorithm. The effectiveness of the genetic algorithm is demonstrated by numerical simulation.


Author(s):  
Li Wang ◽  
Changchun Wu ◽  
Lili Zuo ◽  
Yanfei Huang ◽  
Haihong Chen

Transfer tank farms play an important role in an oil products pipeline network, which receive oil products from upstream pipelines and deliver them to downstream pipelines. The scheduling problem for oil products supply chain is very complicated because of numerous constraints to be considered. The published literatures on schedule optimization of oil products pipeline network usually focus on the batch plans of each pipeline, without consideration on the receipt and delivery schedule of transfer tank farm. In this paper, a mixed-integer linear programming (MILP) model is developed for the schedule optimization of transfer tank farm. The objective of the model is to minimize switching times of the tank operations of a tank farm during a planning horizon, while fulfilling the products transmission requirements of the upstream and downstream pipelines of the tank farm. The constraints of the model include material balance, the operational rules of tanks, the topological structure constraints of the tank farm, the settling period of the oil products stored in dedicated tank and so on. To satisfy the constraint of fulfilling the specific transmission requirements of pipelines, concepts of static and dynamic time slot are proposed. A continuous time representation is used to obtain accurate optimal schedules and decrease scale of the model by reducing the number of variables. The model is solved by CPLEX solver for a transfer tank farm of an oil products pipeline network in China. Some examples are tested under different scenarios and the results show that global optimal solution can be obtain at acceptable computational costs.


2018 ◽  
Vol 29 (3) ◽  
pp. 472-498 ◽  
Author(s):  
Harpreet Kaur ◽  
Surya Prakash Singh

Purpose Procurement planning has always been a huge and challenging activity for business firms, especially in manufacturing. With government legislations about global concern over carbon emissions, the manufacturing firms are enforced to regulate and reduce the emissions caused throughout the supply chain. It is observed that procurement and logistics activities in manufacturing firms contribute heavily toward carbon emissions. Moreover, highly dynamic and uncertain business environment with uncertainty in parameters such as demand, supplier and carrier capacity adds to the complexity in procurement planning. The paper aims to discuss these issues. Design/methodology/approach This paper is a novel attempt to model environmentally sustainable stochastic procurement (ESSP) problem as a mixed-integer non-linear program. The ESSP optimizes the procurement plan of the firm including lot-sizing, supplier and carrier selection by addressing uncertainty and environmental sustainability. The model applies chance-constrained-based approach to address the uncertain parameters. Findings The proposed ESSP model is solved optimally for 30 data sets to validate the proposed ESSP and is further demonstrated using three illustrations solved optimally in LINGO 10. Originality/value The ESSP model simultaneously minimizes total procurement cost and carbon emissions over the entire planning horizon considering uncertain demand, supplier and carrier capacity.


Author(s):  
FATHALLAH NOUBOUD ◽  
RÉJEAN PLAMONDON

This paper presents a real-time constraint-free handprinted character recognition system based on a structural approach. After the preprocessing operation, a chain code is extracted to represent the character. The classification is based on the use of a processor dedicated to string comparison. The average computation time to recognize a character is about 0.07 seconds. During the learning step, the user can define any set of characters or symbols to be recognized by the system. Thus there are no constraints on the handprinting. The experimental tests show a high degree of accuracy (96%) for writer-dependent applications. Comparisons with other system and methods are discussed. We also present a comparison between the processor used in this system and the Wagner and Fischer algorithm. Finally, we describe some applications of the system.


2007 ◽  
Vol 46 (03) ◽  
pp. 324-331 ◽  
Author(s):  
P. Jäger ◽  
S. Vogel ◽  
A. Knepper ◽  
T. Kraus ◽  
T. Aach ◽  
...  

Summary Objectives: Pleural thickenings as biomarker of exposure to asbestos may evolve into malignant pleural mesothelioma. Foritsearly stage, pleurectomy with perioperative treatment can reduce morbidity and mortality. The diagnosis is based on a visual investigation of CT images, which is a time-consuming and subjective procedure. Our aim is to develop an automatic image processing approach to detect and quantitatively assess pleural thickenings. Methods: We first segment the lung areas, and identify the pleural contours. A convexity model is then used together with a Hounsfield unit threshold to detect pleural thickenings. The assessment of the detected pleural thickenings is based on a spline-based model of the healthy pleura. Results: Tests were carried out on 14 data sets from three patients. In all cases, pleural contours were reliably identified, and pleural thickenings detected. PC-based Computation times were 85 min for a data set of 716 slices, 35 min for 401 slices, and 4 min for 75 slices, resulting in an average computation time of about 5.2 s per slice. Visualizations of pleurae and detected thickeningswere provided. Conclusion: Results obtained so far indicate that our approach is able to assist physicians in the tedious task of finding and quantifying pleural thickenings in CT data. In the next step, our system will undergo an evaluation in a clinical test setting using routine CT data to quantifyits performance.


Sign in / Sign up

Export Citation Format

Share Document