scholarly journals Analysis of Thermal Energy Collection From Precast Concrete Roof Assemblies

Author(s):  
Ashley B. Abbott ◽  
Michael W. Ellis

The development of precast concrete housing systems provides an opportunity to easily and inexpensively incorporate solar energy collection by casting collector tubes into the roof structure. A design is presented for a precast solar water heating system used to aid in meeting the space and domestic water heating loads of a single-family residence. A three-dimensional transient collector model is developed to characterize the precast solar collector’s performance throughout the day. The model describes the collector as a series of segments in the axial direction connected by a fluid flowing through an embedded tube. Each segment is represented by a two-dimensional solid model with top boundary conditions determined using a traditional flat plate solar collector model. The precast collector is coupled to a series solar assisted heat pump system and used to meet the heating needs of the residence. The performance of the proposed system is compared to the performance of a typical air-to-air heat pump. Using the system model, various designs and operating parameters were analyzed to determine a set of near optimal design values. The annual performance of the near optimal system was evaluated to determine the energy and cost savings for applications in Atlanta, GA and Chicago, IL. In addition, a life cycle cost was completed to determine the economic feasibility of the proposed system. The results of the annual study show that capturing solar energy using the precast collector and applying the energy through a solar assisted heat pump can reduce the electricity required for heating by more than 50 percent in regions with long heating seasons such as Chicago. The life cycle cost analysis shows that the energy savings justifies the increase in initial cost in locations with long heating seasons but that the system is not economically attractive in locations with shorter heating seasons.

2010 ◽  
Vol 18 (01) ◽  
pp. 31-41
Author(s):  
DONG-HYUN SEO ◽  
JAE-YOON KOH ◽  
YOOL PARK

Recent energy and economic analysis of a cogeneration system has been implemented by a manual calculation that is based on monthly thermal loads of buildings. In this study, a cogeneration system modeling validation with a detail building energy simulation, eQUEST, for a building energy and cost prediction has been implemented. By analyzing the hourly building electricity and thermal loads, it enables designers to decide proper cogeneration system capacity and to estimate more reliable building energy consumption. eQUEST also verified economical and environmental benefits when the heat pump system is integrated with the cogeneration system because the mechanical system configuration benefits from the high efficiency heat pump system while avoiding the building electricity demand increase. Economic analysis such as LCC (Life Cycle Cost) method is carried out to verify economical benefits of the system by applying actual utility rates of KEPCO (Korea Electricity Power COmpany) and KOGAS (KOrea GAS company). As results, the proposed system consumed approximately 40% less energy than the Alt-2 in terms of source energy. LCC analysis results also show that the proposed system could save about 10–14% of energy cost during the life cycle compared to the Alt-1 and Alt-2. It could save 6–7% of the total life cycle cost and it is equivalent to around 1–1.3 billion Won in cost.


Energy ◽  
2020 ◽  
Vol 206 ◽  
pp. 118108
Author(s):  
Yuanlong Cui ◽  
Jie Zhu ◽  
Stamatis Zoras ◽  
Yaning Qiao ◽  
Xin Zhang

2020 ◽  
Vol 207 ◽  
pp. 01014
Author(s):  
Nadezhda Doseva ◽  
Daniela Chakyrova

Nowadays, the application of air-source heat pumps for heating and cooling in residential buildings has been increased significantly. The main occasion for this is the accessibility of a heat source for these devices - the external air. Nevertheless, the increase of the energy efficiency of the air source heat pump systems is a difficult design problem because their capacity and performance are a function of the dynamically changing parameters of the outdoor air. Because of that, the main aim of this study is to develop an approach for choosing a structural scheme of an air-to-water heat pump system under specific climatic conditions. The considered systems are monovalent, bivalent-parallel and bivalent-alternative heat pump systems. In the current paper is conducted a dynamic energy modeling of heating and cooling demand of a typical residential building situated in Varna, Bulgaria and applying the bin temperature data. It is assessed the effect of the heat pump capacity over the annual and seasonal energy performance of the heat pump systems. It is established the effect of the bivalent temperature, cut-off temperature and on-off cycles duration on rates of the criteria for techno-economic assessment. The seasonal coefficient of performance (SCOP), seasonal energy efficiency rate (SEER) and life cycle costs (LCC) of the analyzed heat pump systems are adopted as assessment parameters.


Author(s):  
Haifei Chen ◽  
Guiqiang Li ◽  
Yueyue Ling ◽  
Jie Fu ◽  
Yunjie Wang ◽  
...  

Author(s):  
Lanbin Liu ◽  
Lin Fu ◽  
Yi Jiang

Typically there is a great deal of waste heat available in drainage system of large-scale public bathhouses, such as public bathhouses in schools, barracks and natatoriums. The paper advances a heat pump system used in bathhouses for exhaust heat recovery. The system consists of solar energy collection system, drainage collection system and heat pump system for exhaust heat recovery. In the system, tap water is heated by energy from solar energy collection system, and is used as hot water for bathing at the beginning. At the same time, drainage collection system collects sewage from bathhouses, and then electric heat pump starts up and recovers the exhaust heat in sewage and heats the tap water. In this way, heat is recycled. Practical operation of the system was introduced, and drainage temperature as well as equipment capacity was optimized based on a practical example. Compared with gas-fired (oil-fired, coal-fired, electric) boilers, the system has advantages of lower energy consumption, less pollution and lower operating cost. Therefore, the system has great superiority in energy conservation and has a good application prospect.


Author(s):  
M. N. A. Hawlader ◽  
Zakaria Mohd. Amin ◽  
Shaochun Ye ◽  
Kyaw Thura Win

The low temperature operation of a heat pump makes it an excellent match for the use of solar energy. At the National University of Singapore, a solar assisted heat pump system has been designed, fabricated and installed to provide water heating and drying. The system also utilizes the air con waste heat, which would normally be released to atmosphere adding to global warming. Experimental results show that the two-phase unglazed solar evaporator-collector, instead of losing energy to the ambient, gained a significant amount due to low operating temperature of the collector. As a result, the collector efficiency attains a value greater than 1, when conventional collector equations are used. With this evaporator-collector, the system can be operated even in the absence of solar irradiation. The waste heat was collected from an air-con system, which maintained a room at 20–22 °C. In the condenser side, water at 60 °C was produced at a rate of 3 liter/minute and the drying capacity was 2.2kg/hour. Maximum COP of the system was found to be about 5.5.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4896 ◽  
Author(s):  
Win Jet Luo ◽  
Kun Ying Li ◽  
Jeng Min Huang ◽  
Chong Kai Yu

In this study, a multifunctional air and water source heat pump system was developed with a parallel refrigerant piping arrangement, which possessed six operational functions: space cooling (SC), space heating (SH), water heating (WH), water cooling (WC) and two composite operational modes. The two composite operational modes were the SC/WH mode and the SH/WH mode. The performance of the multifuctional heat pump system under different ambient conditions was investigated based on the testing standards of CNS 14464 and CNS 15466. In this study, the effect of the direct water heating (DWH) and circulating water heating (CWH) methods on the performance was investigated. It was found that the water heating performance of the system by the DWH method is better than that of the system by the CWH method. The water heating capacity and COPw,h of the DWH method can be improvement by 2.6% to 22.1% and 2.9% to 50.8%, respectively. Moreover, this study developed a refrigerant pressure balance method to achieve an effective steady state of the refrigerant pressure after operational mode switching. By the refrigerant pressure balance method, the required time to attain the steady state could be greatly reduced—by 50%. However, the deviation of the refrigerant mass flow rate between the refrigerant pressure balance method and the refrigerant pump down method after operational mode switching ranged from 0.15% to 7.6%.


Sign in / Sign up

Export Citation Format

Share Document