Water Heating and Dehumidification With Heat Pump Utilizing Solar, Ambient and Waste Heat

Author(s):  
M. N. A. Hawlader ◽  
Zakaria Mohd. Amin ◽  
Shaochun Ye ◽  
Kyaw Thura Win

The low temperature operation of a heat pump makes it an excellent match for the use of solar energy. At the National University of Singapore, a solar assisted heat pump system has been designed, fabricated and installed to provide water heating and drying. The system also utilizes the air con waste heat, which would normally be released to atmosphere adding to global warming. Experimental results show that the two-phase unglazed solar evaporator-collector, instead of losing energy to the ambient, gained a significant amount due to low operating temperature of the collector. As a result, the collector efficiency attains a value greater than 1, when conventional collector equations are used. With this evaporator-collector, the system can be operated even in the absence of solar irradiation. The waste heat was collected from an air-con system, which maintained a room at 20–22 °C. In the condenser side, water at 60 °C was produced at a rate of 3 liter/minute and the drying capacity was 2.2kg/hour. Maximum COP of the system was found to be about 5.5.

2016 ◽  
Vol 24 (01) ◽  
pp. 1650004 ◽  
Author(s):  
Le Ngoc Cuong ◽  
Jong-Taek Oh

In this paper, the heat pump system has been developed by CFD simulation and experimental investigation. It studies the thermal behavior of a thermobank and COP on heat pump system and cold storage. The thermobank stores the waste heat of during refrigeration cycles and this energy is used for defrosting process and heating room. It also reduces defrosting time and condensation load so that the temperature regulation in the cold storage is constant. The system is investigated experimentally and CFD simulated under thermobank. The dimension [Formula: see text] of cold storage is [Formula: see text][Formula: see text]m, thermobank is [Formula: see text][Formula: see text]mm. The temperature of ambient on CFD simulation process is 20[Formula: see text]C. This heat pump system can be used to keep preservation of agricultural products in cold storage warehouse together with floor panel heating for room in winter. The ejector is used in system with the aim of increasing coefficient of performance (COP) and decrease in compressor displacement. As the experimental results, its COP is increased about 38.57% when using thermobank and ejector in heat pump system.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3534
Author(s):  
Chandan Swaroop Meena ◽  
Binju P Raj ◽  
Lohit Saini ◽  
Nehul Agarwal ◽  
Aritra Ghosh

The use of solar energy in water heating applications, such as in solar-assisted heat pump systems, has great benefits, such as reductions in heat transfer losses, control over incident solar heat, and generation of environmentally benign water heat. In the present study, we performed parametric optimization based on an experimental model of a solar-assisted heat pump system for water heating (SAHPSWH) in the context of colder climatic regions receiving minimal solar radiation. Various parameters were investigated, such as the different glazing arrangements, the distances between fluid-circulating tubes, and the absorber sheet arrangement. The results showed that double glazing was more efficient than single glazing, with average COP values of 3.37 and 2.69, respectively, and with similar heat gain rates. When the evaporator tube was soldered below the absorber plate, the COP was 1.19 times greater than when the tube was soldered above the absorber plate. We also analyzed whether the collector efficiency factor F′ has an inverse relationship with the tube distance and a direct relationship with the absorber plate thickness. Through this experimental study, we verified that the SAHPSWH is reliable if designed judiciously. This promising energy-saving system is particularly suitable for areas abundant in solar radiation, such as in India, where the needs for space conditioning and water heating are constant.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3511
Author(s):  
Ali Khalid Shaker Al-Sayyab ◽  
Joaquín Navarro-Esbrí ◽  
Victor Manuel Soto-Francés ◽  
Adrián Mota-Babiloni

This work focused on a compound PV/T waste heat driven ejector-heat pump system for simultaneous data centre cooling and waste heat recovery for district heating. The system uses PV/T waste heat as the generator’s heat source, acting with the vapour generated in an evaporative condenser as the ejector drive force. Conventional and advanced exergy and advanced exergoeconomic analyses are used to determine the cause and avoidable degree of the components’ exergy destruction rate and cost rates. Regarding the conventional exergy analysis for the whole system, the compressor represents the largest exergy destruction source of 26%. On the other hand, the generator shows the lowest sources (2%). The advanced exergy analysis indicates that 59.4% of the whole system thermodynamical inefficiencies can be avoided by further design optimisation. The compressor has the highest contribution to the destruction in the avoidable exergy destruction rate (21%), followed by the ejector (18%) and condenser (8%). Moreover, the advanced exergoeconomic results prove that 51% of the system costs are unavoidable. In system components cost comparison, the highest cost comes from the condenser, 30%. In the same context, the ejector has the lowest exergoeconomic factor, and it should be getting more attention to reduce the irreversibility by design improving. On the contrary, the evaporator has the highest exergoeconomic factor (94%).


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4896 ◽  
Author(s):  
Win Jet Luo ◽  
Kun Ying Li ◽  
Jeng Min Huang ◽  
Chong Kai Yu

In this study, a multifunctional air and water source heat pump system was developed with a parallel refrigerant piping arrangement, which possessed six operational functions: space cooling (SC), space heating (SH), water heating (WH), water cooling (WC) and two composite operational modes. The two composite operational modes were the SC/WH mode and the SH/WH mode. The performance of the multifuctional heat pump system under different ambient conditions was investigated based on the testing standards of CNS 14464 and CNS 15466. In this study, the effect of the direct water heating (DWH) and circulating water heating (CWH) methods on the performance was investigated. It was found that the water heating performance of the system by the DWH method is better than that of the system by the CWH method. The water heating capacity and COPw,h of the DWH method can be improvement by 2.6% to 22.1% and 2.9% to 50.8%, respectively. Moreover, this study developed a refrigerant pressure balance method to achieve an effective steady state of the refrigerant pressure after operational mode switching. By the refrigerant pressure balance method, the required time to attain the steady state could be greatly reduced—by 50%. However, the deviation of the refrigerant mass flow rate between the refrigerant pressure balance method and the refrigerant pump down method after operational mode switching ranged from 0.15% to 7.6%.


2019 ◽  
Vol 2019.25 (0) ◽  
pp. 19D13
Author(s):  
Junya SAWATA ◽  
Atsushi AKISAWA ◽  
Masayuki NAKAYAMA ◽  
Yoshinori MIYAMOTO

2014 ◽  
Vol 521 ◽  
pp. 56-59
Author(s):  
Hui Xing Li ◽  
Peng Cheng ◽  
Guo Hui Feng ◽  
Ran Zhang

New energy development and utilization is an important approach to solve the problem of energy shortage,a new type of composite heating system is proposed in this study. It expounds the research ideas, the technical principle and operation plan of the system. Through a comparative analysis of the performance coefficient of composite heating system, reclaimed water source heat pump system and solar hot water heating system, it Comes to the conclusions that the composite heating system can not only reduce the operating cost but also improve the running performance of reclaimed water source heat pump and reduce the heat loss of solar hot water heating system.


Author(s):  
Jung Chan Park ◽  
Kil Young Kim ◽  
Jinhee Jeong ◽  
Seung Jin Song

A typical turbo heat pump system consists of a centrifugal compressor, expansion valve, and two heat exchangers or plenums — a condenser and evaporator. Compared to a gas turbine, a turbo heat pump introduces additional complexities because it is a two-phase, closed-loop system with heat exchange using a real gas/liquid (refrigerant) as working fluid. For such systems, a new linear stability model has been developed by applying a linearized small perturbation method to the nonlinear turbo heat pump surge model. When the new linear model is applied to a compressor in an open loop system (e.g. turbocharger), results identical to those of Greitzer’s model are obtained. When applied to an operating turbo heat pump, the new model accurately predicts the surge onset point. Finally, results from a parametric study on the influence of the B parameter on surge onset are presented. Thus, the new model can be applied to predict stability of various compression systems — either open or closed-loop systems running single or two-phase working fluids with or without heat exchange.


Sign in / Sign up

Export Citation Format

Share Document