Liquid Calcium Chloride Solar Storage: Concept and Analysis

Author(s):  
Josh A. Quinnell ◽  
Jane H. Davidson ◽  
Jay Burch

Aqueous calcium chloride has a number of potential advantages as a compact and long-term solar storage medium compared to sensibly heated water. The combination of sensible and chemical binding energy of the liquid desiccant provides higher energy densities and lower thermal losses, as well as a temperature lift during discharge via an absorption heat pump. Calcium chloride is an excellent choice among desiccant materials because it is relatively inexpensive, non-toxic, and environmentally safe. This paper provides an overview of its application for solar storage and presents a novel concept for storing the liquid desiccant in a single storage vessel. The storage system uses an internal heat exchanger to add and discharge thermal energy and to help manage the mass, momentum, and energy transfer in the tank. The feasibility of the proposed concept is demonstrated via a computational fluid dynamic study of heat and mass transfer in the system over a range of Rayleigh, Lewis, Prandtl, and buoyancy ratio numbers expected in practice.

2011 ◽  
Vol 133 (1) ◽  
Author(s):  
Josh A. Quinnell ◽  
Jane H. Davidson ◽  
Jay Burch

Aqueous calcium chloride has a number of potential advantages as a compact and long-term solar storage medium compared with sensibly heated water. The combination of sensible and chemical binding energy of the liquid desiccant provides higher energy densities and lower thermal losses, as well as a temperature lift during discharge via an absorption heat pump. Calcium chloride is an excellent choice among desiccant materials because it is relatively inexpensive, nontoxic, and environmentally safe. This paper provides an overview of its application for solar storage and presents a novel concept for storing the liquid desiccant in a single storage vessel. The storage system uses an internal heat exchanger to add and discharge thermal energy and to help manage the mass, momentum, and energy transfer in the tank. The feasibility of the proposed concept is demonstrated via a computational fluid dynamic study of heat and mass transfer in the system over a range of Rayleigh, Lewis, Prandtl, and buoyancy ratio numbers expected in practice.


Author(s):  
Josh A. Quinnell ◽  
Jane H. Davidson

A new concept for long-term solar storage is based on the absorption properties of aqueous calcium chloride. Water, diluted and concentrated calcium chloride solutions are stored in a single tank. An immersed heat exchanger and stratification manifold are used to preserve long-term sorption storage, and to achieve thermal stratification. The feasibility of the concept is demonstrated via measurements of velocity, CaCl2 mass fraction, and temperature in a 1500 liter prototype tank during sensible charging. Experiments are conducted over a practical range of the relevant dimensionless parameters. For Rayleigh numbers from 3.4 × 108 to 5.6 × 1010 and buoyancy ratios from 0.8 to 46.2, measured Sherwood numbers are 11±2 to 62±9 and the tank is thermally stratified. Convective mixing is inhibited by the presence of a steep density gradient at the interface between regions of differing mass fraction. The predicted storage time scales for the reported Sherwood numbers are 160 to 902 days.


Author(s):  
Karelle Couturier ◽  
Farida Joppich ◽  
Antje Wo¨rner ◽  
Rainer Tamme

The aim of this work is to reduce the refueling time of a metal hydride storage tank by improving its design, taking in account the total volumetric and mass capacity of the tank. A heat and mass transfer model is proposed and solved to obtain the charging curve for 1 kg hydrogen in a LaNi5 reference storage tank. Compared to gas transport and reaction kinetics, heat transfer is found to limit the hydrogen charging dynamics of the storage tank. To improve the refueling time, it is found to be necessary to increase first of all the heat transfer inside the metal hydride bed, and subsequently the heat transfer from the metal hydride bed to the cooling fluid. Technical solutions such as the implementation of aluminum foam and/or internal heat exchanger tubes are investigated. By combining both solutions, the refueling time can be reduced from 400 minutes (reference tank) to 15 minutes. The tank volume still meets the DOE targets, but its mass remains a problem. Therefore, new materials with improved gravimetric capacity have to be developed. With this work it is now possible to improve the tank design for newly developed storage materials and to evaluate their potential for technical applications.


Author(s):  
V. Pérez-García ◽  
D. Méndez-Méndez ◽  
J.M. Belman-Flores ◽  
J.L. Rodríguez-Muñoz ◽  
J.J. Montes-Rodríguez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document