Numerical Study of the Effect of a Biodiesel on the Cylinder Liner of Compression Ignition Engine

Author(s):  
Chidiebere F. Nwaiwu ◽  
Olisaemeka C. Nwufo ◽  
Johnson O. Igbokwe ◽  
Nnamdi V. Ogueke ◽  
Emmanuel E. Anyanwu

A numerical study of temperature distribution in the cylinder liner of biodiesel-powered compression ignition engine is presented. The mathematical model equations developed were based on heat transfers in the cylinder liner and subsequently transformed using the finite difference method. Numerical solutions were obtained from computer codes written in MATLAB programming language. A biodiesel produced from Nigerian physic nut oil was used in the study. The result was compared with that obtained for conventional diesel fuel. The results revealed that the cylinder head section of the liner material presented higher temperature distribution compared to the oil sump section of the liner. Over a twelve-minute time range, the liner attained steady state with Jatropha-based biodiesel, recording a maximum temperature of 873.1°C. Conventional diesel recorded the lower temperature of 784.3°C. Results also showed that the cylinder head section of the liner material closest to the combustion chamber experienced the greatest temperature rise in comparison to other parts of the liner. These results show that though there are lots of publications confirming that a compression ignition engine previously running on diesel fuel can run on biodiesel fuel or its blend with diesel, there is a need for a further critical study on the development of engine parts like the cylinder liner.

Author(s):  
Chidiebere Nwaiwu ◽  
Kevin Nwaigwe ◽  
Nnamdi Ogueke

There has been a global search for alternative fuels that are environmentally friendly to replace and or compliment the conventional fossil fuels used in running engines. This is in line with the global action to reduce CO2 emissions hence ameliorating the effect of climate change. Biodiesel fuels have been adjudged to be clean energy with minimal environmental pollution during combustion. Hence, biodiesel fuels for running compression ignition engines have been developed from various feedstocks such as vegetable oils, animal fat, and waste or used cooking oils. The properties of these biodiesels have been reported to be dependent on the feedstock type and therefore vary according to the source feedstock. In carrying out this present study on the effects of utilising biodiesel fuel on the compression ignition engine, a numerical study of temperature distribution in the cylinder liner of biodiesel-powered compression ignition engine is presented. Biodiesel produced from palm kernel oil is used. Eight nodes in the cylinder liner spanning the top section of the liner, midpoint and the interface between the liner and the block were used as data source as it is established that sharp-edged points are most likely regions for thermal stress. Of the eight nodes selected, four were edge nodes and the other four were nodes at the interface with varying conditions. Model equations used for the study were developed and subsequently transformed using the finite difference method. Numerical solutions were obtained from computer codes written in MATLAB programming language. The obtained results from this code were compared to results obtained from commercial software (ANSYS FLUENT) for same geometry and boundary conditions. Results on the cylinder liner showed steady state temperatures were reached in about five minutes using both the MATLAB code and ANSYS FLUENT and both results showed a similar trend of temperature distribution in the radial direction. However, the MATLAB code showed higher temperatures at the upper section of the liner material as compared to the midpoint of the liner whereas ANSYS FLUENT showed the midpoint section to possess maximum temperatures as compared to the cylinder head section. Both results agree with the lower section having least temperature distribution. Further analyses were carried out on the midpoint of the cylinder and the cylinder head section and factors responsible for the discrepancies discussed. The outcome of this study presents palm kernel based biodiesel as an alternative fuel in cylinder engines while highlighting sections of the engine that require design attention in terms of heat flux and engine stability.


Author(s):  
Yuanjiang Pei ◽  
Marco Mehl ◽  
Wei Liu ◽  
Tianfeng Lu ◽  
William J. Pitz ◽  
...  

A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition (CI) engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multicomponent mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine (RCM) and shock tube (ST), speciation data from the jet stirred reactor and flame speed data. This combined mechanism was validated by comparing predictions from the model with experimental data for ignition in STs and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11,754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1–80 bar, equivalence ratio of 0.5–2.0, and initial temperature of 700–1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the engine combustion network (ECN) website. These multidimensional simulations were performed using a representative interactive flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regard to the predictions of ignition delay and lift-off length at different ambient temperatures.


2019 ◽  
Vol 179 (4) ◽  
pp. 259-263
Author(s):  
Jerzy WAWRZYCZEK ◽  
Tomasz KNEFEL

The work contains calculations to determine the deformation and stress in the block of a currently produced small displacement compression ignition engine. It is also an attempt to introduce some modifications to reduce the mass of the calculated component. In the first step, based on measurements, the model of the engine block was developed. The Autodesk Inventor 2016 software was used. Two additional components were also designed to provide the block closure: a simplified cylinder head and an integrated main bearing support. All elements were imported to the Siemens NX 12 program. The calculations were carried out for different cylinders and different values of the combustion pressure. An attempt was made to introduce some modifications to reduce the weight of the calculated element.


2019 ◽  
Vol 22 (1) ◽  
pp. 165-183 ◽  
Author(s):  
Oudumbar Rajput ◽  
Youngchul Ra ◽  
Kyoung-Pyo Ha ◽  
You-Sang Son

Engine performance and emissions of a six-stroke gasoline compression ignition engine with a wide range of continuously variable valve duration control were numerically investigated at low engine load conditions. For the simulations, an in-house three-dimensional computational fluid dynamics code with high-fidelity physical sub-models was used, and the combustion and emission kinetics were computed using a reduced kinetics mechanism for a 14-component gasoline surrogate fuel. Variation of valve timing and duration was considered under both positive valve overlap and negative valve overlap including the rebreathing of intake valves via continuously variable valve duration control. Close attention was paid to understand the effects of two additional strokes of the engine cycle on the thermal and chemical conditions of charge mixtures that alter ignition, combustion and energy recovery processes. Double injections were found to be necessary to effectively utilize the additional two strokes for the combustion of overly mixed lean charge mixtures during the second power stroke. It was found that combustion phasing in both power strokes is effectively controlled by the intake valve closure timing. Engine operation under negative valve overlap condition tends to advance the ignition timing of the first power stroke but has minimal effect on the ignition timing of second power stroke. Re-breathing was found to be an effective way to control the ignition timing in second power stroke at a slight expense of the combustion efficiency. The operation of a six-stroke gasoline compression ignition engine could be successfully simulated. In addition, the operability range of the six-stroke gasoline compression ignition engine could be substantially extended by employing the continuously variable valve duration technique.


Sign in / Sign up

Export Citation Format

Share Document