scholarly journals A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications

Author(s):  
Yuanjiang Pei ◽  
Marco Mehl ◽  
Wei Liu ◽  
Tianfeng Lu ◽  
William J. Pitz ◽  
...  

A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition (CI) engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multicomponent mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine (RCM) and shock tube (ST), speciation data from the jet stirred reactor and flame speed data. This combined mechanism was validated by comparing predictions from the model with experimental data for ignition in STs and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11,754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1–80 bar, equivalence ratio of 0.5–2.0, and initial temperature of 700–1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the engine combustion network (ECN) website. These multidimensional simulations were performed using a representative interactive flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regard to the predictions of ignition delay and lift-off length at different ambient temperatures.

Author(s):  
Yuanjiang Pei ◽  
Marco Mehl ◽  
Wei Liu ◽  
Tianfeng Lu ◽  
William J. Pitz ◽  
...  

A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multi-component mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine and shock tube, speciation data from the jet stirred reactor and flame speed data. This combined mechanism was validated by comparing predictions from the model with experimental data for ignition in shock tubes and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1–80 bar, equivalence ratio of 0.5–2.0, and initial temperature of 700–1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the Engine Combustion Network (ECN) website. These multi-dimensional simulations were performed using a Representative Interactive Flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regards to the predictions of ignition delay and lift-off length at different ambient temperatures.


Author(s):  
Michal Jukl ◽  
Petr Dostál ◽  
Jiří Čupera

This work is aimed on influence of diesel engine parameters that is used with mixture of gas and diesel fuel. The first part of the article describes diesel fuel systems where small part of diesel fuel is replaced by LPG or CNG fuel. These systems are often called as Diesel-Gas systems. Next part of the article focuses on tested car and measurement equipment. Measurement was performed by common-rail diesel engine in Fiat Doblň. Tests were carried out in laboratories of the Department of Engineering and Automobile Transport at the Mendel University in Brno. They were observed changes between emissions of used fuels – diesel without addition of gas, diesel + LPG and diesel + CNG mixture. It was found that that the addition of gas had positive effect on the performance parameters and emissions.


2016 ◽  
Vol 9 (2) ◽  
pp. 97-101
Author(s):  
Biplab Das ◽  
Pradip Lingfa

The paper highlights the results of an experimental investigation carried out on Karanja oil as a supplementary for diesel fuel in Compression Ignition engine. In the present study, triglycerides of Karanja oil is converted into mono-ester (biodiesel) using based catalyst transesterfication process. Karanja biodiesel is blended with petroleum diesel in the volumetric proportions of 2−10%. Results reveal that the performance characteristics of Karanja biodiesel blends are well comparable with diesel fuel. The emission characteristics such as CO, HC and smoke are found to be lower for Karanja biodiesel blends at all the engine load conditions compared to diesel fuel. Hence, it is concluded that Karanja oil at lower blends can be used in diesel engine without any substantial engine modification.


2021 ◽  
Vol 2 (1) ◽  
pp. 15-24
Author(s):  
Ishwar Joshi ◽  
Surya Prasad Adhikari

 In this study, biodiesel from the stem of Pinus roxburghii was prepared by steam distillation process. Consequently, the physical and thermal properties of pine biodiesel (P100), and 20 % pine-biodiesel and 80 % diesel (P20) were tested on American Society for Testing and Materials (ASTM) standards. The test results confirmed that the thermophysical properties of pine biodiesel and its blend were suitable for the fuel in diesel engine without any modification in the test engine. Eventually, the engine performance and combustion parameters were evaluated for pine-biodiesel blend for 5 % biodiesel and 95 % diesel (P5), 10 % biodiesel and 90 % diesel (P10), 15 % biodiesel and 85 % diesel (P15) and P20, and compared with diesel on Kirloskar Single Cylinder Compression Ignition Engine for a compression ratio of 15:1. In the midst of those in different blends evaluated, P15 showed the better brake specific fuel consumption (BSFC) i.e 18.75 % lower than diesel fuel particularly up to 50 % of the engine load. However, at higher load, decrease rate in BSFC of P15 fuel is lower than engine load up to 50 %. Similarly, brake thermal efficiency (BTE) of P15 increases to 13.5% mainly on 50 % loading condition of the engine. At above, increment rate of BTE of pine oil biodiesel compared to diesel decreases. The brake power (BP) and brake mean effective pressure (BMEP) of P15 also found nearer to diesel. However, the BP of P15 found higher compared to diesel in all loading conditions. Thus, from the experimental investigations, P15 blend of pine oil biodiesel was found to be amenable for its use in compression ignition (CI) engine without any modification, as the BTE and SFC were found to better and, BP, indicated power (IP) and BMEP were also found nearer to diesel fuel.


2017 ◽  
Vol 171 (4) ◽  
pp. 81-86
Author(s):  
Omid DOUSTDAR ◽  
Miroslaw WYSZYNSKI ◽  
Athanasios TSOLAKIS ◽  
Hamid MAHMOUDI

Use of alternative fuels in compression ignition engines is the topic for many studies. This paper presents the results of lubricity, calorific value, viscosity, surface tension and density of a ketone blend with diesel to use as a fuel in compression ignition engine. Analyses of fuel properties are vital due to their effect on fuel system. In addition, this study is related to the development of future biofuels and it indicates the effect of oxygen double bond in molecular structure of ketones on important fuel properties. Cyclopentanone which has cyclic molecular structure was used; it can be produced from lignocellulosic biomass through various processing ways. This ketone was blended with diesel fuel at 10% vol. Results from fuel properties tests were compared to the conventional diesel fuel. In the next step this blend was tested in a research diesel engine to analyse its combustion behaviour and emission characteristics of exhaust gases; these results were compared with ultra-low sulphur diesel fuel. Results showed that cyclopentanone, as an additive to diesel, improved surface tension and density of the fuel but in contrast had negative effect on viscosity, lubricity and calorific value of the fuel, but still in the standard range. Combustion behaviour of this fuel in the diesel engine also showed longer ignition delay of ketone blend and also that gaseous emission such as CO and THC are higher than from diesel fuel and NOx emission is less than from conventional diesel fuel combustion.


2019 ◽  
Vol 8 (4) ◽  
pp. 6045-6049

Diesel engines are principally employed in industries, transportation and agricultural fields because of their high efficiency and reliability. However, too much of smoke and nitric oxide emissions is one of the drawbacks. To regulate pollution and other negative effects of diesel engines, alternative fuels have come into existence. Ethanol produced from sugarcane in the biomass process is a recent example of it, due to its high octane number. But using raw ethanol is not a quality fuel for a solid ignition engine. It can be converted through a dehydration process to produce Diethyl Ether (DEE), which is an excellent compression-ignition fuel with a higher energy level than ethanol. DEE having a starting problem can’t be used directly in large amounts in diesel engines, but using it in small amounts is an advantage. This paper highlights the performance of blended pyrolysis oil with diesel fuel in the combination of DEE used in a mono cylinder four-stroke diesel engine. The pyrolysis process was used to extract the pyro oil from the Mosambi peel biomass. The oil has been extracted from Mosambi peel at the reaction temperature of 750˚C, in other words, the fast pyrolysis process. The study was conducted on composition of MDEE5 (5%MPPO+5%DEE+90D),MDEE10(10%MPPO+5%DEE+85% D) and MDEE15 (15% MPPO + 5%DEE + 80% D). Characteristics of the above combinations, MDEE5, MDEE10, and MDEE15 were analyzed and the properties like viscosity, density, flashpoint, fire point FTIR analysis of oils are also recorded. The blending of pyrolysis oil and DEE are mixed with diesel fuel with its volume. All the blended fuels were tested at 1500 rpm single-cylinder diesel engine. The maximum power output of brake thermal efficiency was recorded as 31.5% with MDEE5 as it was 30.0% with BD. The emission of smoke and NOx were considerably reduced


1980 ◽  
Vol 102 (4) ◽  
pp. 842-846 ◽  
Author(s):  
A. Voorhies ◽  
L. R. Daniel ◽  
L. Long

Six diesel fuels, varying in percent hydrogen from 12.36 to 14.38 percent and in cetane number from 37.5 to 55.5, were evaluated for percent opacity as a function of fuel-air ratio—both at 800 and 1000 rpm—in a Waukesha CFR diesel engine. In both cases, at a given fuel-air ratio, the smoke emissions (measured by percent opacity) decreased with increasing percent hydrogen in the fuel. In these studies, percent hydrogen was both a satisfactory and a unique parameter, since neither cetane number nor volatility of the various fuels could be correlated with smoke emissions. In these studies, percent hydrogen is apparently the essential index of diesel fuel quality for satisfactory smoke emissions.


2016 ◽  
Vol 9 (2) ◽  
pp. 97-101
Author(s):  
Biplab Das ◽  
Pradip Lingfa

The paper highlights the results of an experimental investigation carried out on Karanja oil as a supplementary for diesel fuel in Compression Ignition engine. In the present study, triglycerides of Karanja oil is converted into mono-ester (biodiesel) using based catalyst transesterfication process. Karanja biodiesel is blended with petroleum diesel in the volumetric proportions of 2−10%. Results reveal that the performance characteristics of Karanja biodiesel blends are well comparable with diesel fuel. The emission characteristics such as CO, HC and smoke are found to be lower for Karanja biodiesel blends at all the engine load conditions compared to diesel fuel. Hence, it is concluded that Karanja oil at lower blends can be used in diesel engine without any substantial engine modification.


2021 ◽  
Vol 13 (14) ◽  
pp. 7688
Author(s):  
Asif Afzal ◽  
Manzoore Elahi M. Soudagar ◽  
Ali Belhocine ◽  
Mohammed Kareemullah ◽  
Nazia Hossain ◽  
...  

In this study, engine performance on thermal factors for different biodiesels has been studied and compared with diesel fuel. Biodiesels were produced from Pongamia pinnata (PP), Calophyllum inophyllum (CI), waste cooking oil (WCO), and acid oil. Depending on their free fatty acid content, they were subjected to the transesterification process to produce biodiesel. The main characterizations of density, calorific range, cloud, pour, flash and fire point followed by the viscosity of obtained biodiesels were conducted and compared with mineral diesel. The characterization results presented benefits near to standard diesel fuel. Then the proposed diesel engine was analyzed using four blends of higher concentrations of B50, B65, B80, and B100 to better substitute fuel for mineral diesel. For each blend, different biodiesels were compared, and the relative best performance of the biodiesel is concluded. This diesel engine was tested in terms of BSFC (brake-specific fuel consumption), BTE (brake thermal efficiency), and EGT (exhaust gas temperature) calculated with the obtained results. The B50 blend of acid oil provided the highest BTE compared to other biodiesels at all loads while B50 blend of WCO provided the lowest BSFC compared to other biodiesels, and B50 blends of all biodiesels provided a minimum % of the increase in EGT compared to diesel.


Sign in / Sign up

Export Citation Format

Share Document