Ducted fuel injection: Numerical study of soot formation and oxidation using detailed soot modeling approach in a compression ignition engine at different loads

Author(s):  
Ramazan Şener
2020 ◽  
pp. 146808742095132
Author(s):  
José V Pastor ◽  
Antonio García ◽  
Carlos Micó ◽  
Felipe Lewiski

Considering the need of pollutant emissions reduction and the high cost of the after-treatment systems, in-cylinder solutions for pollutant reduction are becoming more and more relevant. Among different proposals, new piston geometries are considered an attractive solution for reducing both soot and nitrogen oxides emissions in compression ignition engines. For this reason, this paper evaluates the soot formation and combustion characteristics of a novel piston geometry proposal, called stepped lip-wave, for light-duty engines. It is compared with other two well-known bowl geometries: re-entrant and stepped lip. The study was performed in an optical single-cylinder direct injection compression ignition engine. Two optical techniques (2 color pyrometry and OH* chemiluminescence) were applied for analyzing soot formation in each piston geometry. Test were performed at different engine loads, fuel injection characteristics and exhaust gas recirculation configuration. The re-entrant piston presents higher soot formation and a slower late oxidation process in comparison with the other two geometries. Stepped lip and stepped lip-wave present similar soot formation levels. However, stepped lip-wave showed a more efficient and faster soot oxidation process during the final combustion stages. Results confirm the potential of the stepped lip-wave concept to reduce soot emissions and achieve a cleaner energy production system.


2021 ◽  
Author(s):  
Aran Mohammad ◽  
Reza Rezaei ◽  
Christopher Hayduk ◽  
Thaddaeus O. Delebinski ◽  
Saeid Shahpouri ◽  
...  

2021 ◽  
pp. 1-29
Author(s):  
Ratnak Sok ◽  
Kei Yoshimura ◽  
Kenjiro Nakama ◽  
Jin Kusaka

Abstract The oxygen-depleted environment in the recompression stroke can convert gasoline fuel into light hydrocarbons due to thermal cracking, partial oxidation, and water-gas shift reactions. These reformate species can influence the combustion characteristics of gasoline direct injection homogeneous charge compression ignition (GDI-HCCI) engines. In this work, the combustion phenomena are investigated using a single-cylinder research engine under a medium load. The main combustion phases are experimentally advanced by direct fuel injection into the negative valve overlap (NVO) compared with that of intake stroke under single/double pulse injections. NVO peak in-cylinder pressures are lower than that of motoring due to the limited O2 concentration, emphasizing that endothermic reactions occur during the overlap. This phenomenon limits the oxidation reactions, and the thermal effect is not pronounced. The 0-D chemical kinetics results present the same increasing tendencies of classical reformed species of rich-mixture such as C3H6, C2H4, CH4, CO, and H2 as functions of injection timings. Predicted ignition delays are shortened due to the additions of these reformed species. The influences of the reformates on the main combustion are confirmed by 3-D CFD calculations, and the results show that OH radicals are advanced under NVO injections relative to intake stroke injections. Consequently, earlier heat release and cylinder pressure are noticeable. Parametric studies on the effects of injection pressure, double-pulse injection, and equivalence ratio on the combustion and emissions are also discussed experimentally.


2019 ◽  
Vol 22 (1) ◽  
pp. 165-183 ◽  
Author(s):  
Oudumbar Rajput ◽  
Youngchul Ra ◽  
Kyoung-Pyo Ha ◽  
You-Sang Son

Engine performance and emissions of a six-stroke gasoline compression ignition engine with a wide range of continuously variable valve duration control were numerically investigated at low engine load conditions. For the simulations, an in-house three-dimensional computational fluid dynamics code with high-fidelity physical sub-models was used, and the combustion and emission kinetics were computed using a reduced kinetics mechanism for a 14-component gasoline surrogate fuel. Variation of valve timing and duration was considered under both positive valve overlap and negative valve overlap including the rebreathing of intake valves via continuously variable valve duration control. Close attention was paid to understand the effects of two additional strokes of the engine cycle on the thermal and chemical conditions of charge mixtures that alter ignition, combustion and energy recovery processes. Double injections were found to be necessary to effectively utilize the additional two strokes for the combustion of overly mixed lean charge mixtures during the second power stroke. It was found that combustion phasing in both power strokes is effectively controlled by the intake valve closure timing. Engine operation under negative valve overlap condition tends to advance the ignition timing of the first power stroke but has minimal effect on the ignition timing of second power stroke. Re-breathing was found to be an effective way to control the ignition timing in second power stroke at a slight expense of the combustion efficiency. The operation of a six-stroke gasoline compression ignition engine could be successfully simulated. In addition, the operability range of the six-stroke gasoline compression ignition engine could be substantially extended by employing the continuously variable valve duration technique.


Sign in / Sign up

Export Citation Format

Share Document