Extended Self-Similarity in Drag-Reduced Turbulent Flow of Viscoelastic Fluid

Author(s):  
Feng-Chen Li ◽  
Hong-Na Zhang ◽  
Wei-Hua Cai ◽  
Juan-Cheng Yang

Direct numerical simulations (DNS) have been performed for drag-reduced turbulent channel flow with surfactant additives and forced homogeneous isotropic turbulence with polymer additives. Giesekus constitutive equation and finite extensible nonlinear elastic model with Peterlin closure were used to describe the elastic stress tensor for both cases, respectively. For comparison, DNS of water flows for both cases were also performed. Based on the DNS data, the extended self-similarity (ESS) of turbulence scaling law is investigated for water and viscoelastic fluids in turbulent channel flow and forced homogeneous isotropic turbulence. It is obtained that ESS still holds for drag-reduced turbulent flows of viscoelastic fluids. In viscoelastic fluid flows, the regions at which δu(r)∝r and Sp(r)∝S3(r)ζ(p) with ζ(p) = p/3, where r is the scale length, δu(r) is the longitudinal velocity difference along r and Sp(r) is the pth-order moment of velocity increments, in the K41 (Kolmogorov theory)-fashioned plots and ESS-fashioned plots, respectively, are all broadened to larger scale for all the investigated cases.

2006 ◽  
Vol 61 (12) ◽  
pp. 624-628
Author(s):  
Jian-Ping Luo ◽  
Tatsuo Ushijima ◽  
Osami Kitoh ◽  
Zhi-Ming Lu ◽  
Yu-Lu Liu ◽  
...  

The relation between Eulerian structure function’s scaling exponents and Lagrangian ones in turbulent channel flows is explored both theoretically and numerically. A nonlinear parametric transformation between Eulerian structure function’s scaling exponents and Lagrangian ones is derived, following Landau and Novikov’s frame work. This relation is then compared to some known experimental and numerical results, but mainly to our DNS (direct numerical simulation) results of a fully developed channel flow with Reτ = 100. The scaling exponents are evaluated in terms of the ESS (extended self-similarity) method, since the Reynolds number is too low to make the standard scaling laws applicable. The agreement between theory and simulation is satisfactory


Author(s):  
Lu Wang ◽  
Zhi-Ying Zheng ◽  
Ping-An Liu ◽  
Yue Wang ◽  
Wei-Hua Cai ◽  
...  

Large eddy simulation (LES) was performed for turbulent channel flow with and without surfactant additives at Reτ = 590. Since turbulent channel flow can be divided into linear substrate layer, buffer layer, logarithm layer and outer layer along the wall-normal direction, so study on the flow properties at different layers in turbulent channel flow of viscoelastic fluid is significant for investigating turbulent drag-reducing mechanism and realizing the control of turbulent drag-reducing flow in the future. In this present work, the influences of surfactant additives on flow properties at different y locations were analyzed by researching the mean streamwise velocity, the root-mean-square velocity fluctuations, Reynolds shear stress and the contributions of different parts to turbulent kinetic energy, as well as the scaling law for four layers by two-dimensional wavelet transform. From the viewpoint of the above results, it is showed that the buffer layer tends to get wider in viscoelastic fluid and it is also demonstrated that viscoelastic effect mainly inhibits the coherent structures in the buffer layer, which are ejected from the linear substrate layer.


Author(s):  
Atsushi Nagamachi ◽  
Takahiro Tsukahara

Abstract We tested Artificial Neural Networks (ANNs) to predict a fully-developed turbulent channel flow of a viscoelastic fluid in preparation for elucidating flow phenomenon and solving the difficulty in DNS (Direct Numerical Simulation) due to numerical instability of the viscoelastic fluid. Two kinds of ANNs (multi-layer perceptron (MLP) and U-Net) were trained using DNS data to predict conformation stress from given instantaneous field. The MLP showed accurate predictions and predictions got better with z-score normalization. ANN predicted accurately in near-wall region having coherent structures. In addition, we demonstrated that ANN get the nonlinear relationship between velocity gradient and viscoelastic stress partially.


2016 ◽  
Vol 804 ◽  
pp. 5-23 ◽  
Author(s):  
Alain Pumir ◽  
Haitao Xu ◽  
Eric D. Siggia

In a channel flow, the velocity fluctuations are inhomogeneous and anisotropic. Yet, the small-scale properties of the flow are expected to behave in an isotropic manner in the very-large-Reynolds-number limit. We consider the statistical properties of small-scale velocity fluctuations in a turbulent channel flow at moderately high Reynolds number ($Re_{\unicode[STIX]{x1D70F}}\approx 1000$), using the Johns Hopkins University Turbulence Database. Away from the wall, in the logarithmic layer, the skewness of the normal derivative of the streamwise velocity fluctuation is approximately constant, of order 1, while the Reynolds number based on the Taylor scale is $R_{\unicode[STIX]{x1D706}}\approx 150$. This defines a small-scale anisotropy that is stronger than in turbulent homogeneous shear flows at comparable values of $R_{\unicode[STIX]{x1D706}}$. In contrast, the vorticity–strain correlations that characterize homogeneous isotropic turbulence are nearly unchanged in channel flow even though they do vary with distance from the wall with an exponent that can be inferred from the local dissipation. Our results demonstrate that the statistical properties of the fluctuating velocity gradient in turbulent channel flow are characterized, on one hand, by observables that are insensitive to the anisotropy, and behave as in homogeneous isotropic flows, and on the other hand by quantities that are much more sensitive to the anisotropy. How this seemingly contradictory situation emerges from the simultaneous action of the flux of energy to small scales and the transport of momentum away from the wall remains to be elucidated.


2001 ◽  
Vol 44 (5) ◽  
pp. 645-654 ◽  
Author(s):  
Xinliang Li ◽  
Yanwen Ma ◽  
Dexun Fu

2013 ◽  
Vol 721 ◽  
pp. 627-668 ◽  
Author(s):  
Rémi Zamansky ◽  
Ivana Vinkovic ◽  
Mikhael Gorokhovski

AbstractThis paper focuses on the characterization and the stochastic modelling of the fluid acceleration in turbulent channel flow. In the first part, the acceleration is studied by direct numerical simulation (DNS) at three Reynolds numbers (${\mathit{Re}}_{\ast } = {u}_{\ast } h/ \nu = 180$, 590 and 1000). It is observed that whatever the wall distance is, the norm of acceleration is log-normally distributed and that the variance of the norm is very close to its mean value. It is also observed that from the wall to the centreline of the channel, the orientation of acceleration relaxes statistically towards isotropy. On the basis of dimensional analysis, a universal scaling law for the acceleration norm is proposed. In the second part, in the framework of the norm/orientation decomposition, a stochastic model of the acceleration is introduced. The stochastic model for the norm is based on fragmentation process which evolves across the channel with the wall distance. Simultaneously the orientation is simulated by a random walk on the surface of a unit sphere. The process is generated in such a way that the mean components of the orientation vector are equal to zero, whereas with increasing wall distance, all directions become equally probable. In the third part, the models are assessed in the framework of large-eddy simulation with stochastic subgrid acceleration model (LES–SSAM), introduced recently by Sabel’nikov, Chtab-Desportes & Gorokhovski (Euro. Phys. J. B, vol. 80, 2011, p. 177–187), and designed to account for the intermittency at subgrid scales. Computations by LES–SSAM and its assessment using DNS data show that the prediction of important statistics to characterize the flow, such as the mean velocity, the energy spectra at small scales, the viscous and turbulent stresses, the distribution of the acceleration can be considerably improved in comparison with standard LES. In the last part of this paper, the advantage of LES–SSAM in accounting for the subgrid flow structure is demonstrated in simulation of particle-laden turbulent channel flows. Compared to standard LES, it is shown that for different Stokes numbers, the particle dynamics and the turbophoresis effect can be predicted significantly better when LES–SSAM is applied.


2012 ◽  
Vol 701 ◽  
pp. 419-429 ◽  
Author(s):  
P. E. Hamlington ◽  
D. Krasnov ◽  
T. Boeck ◽  
J. Schumacher

AbstractLocal dissipation-scale distributions and high-order statistics of the energy dissipation rate are examined in turbulent channel flow using very high-resolution direct numerical simulations at Reynolds numbers ${\mathit{Re}}_{\tau } = 180$, $381$ and $590$. For sufficiently large ${\mathit{Re}}_{\tau } $, the dissipation-scale distributions and energy dissipation moments in the channel bulk flow agree with those in homogeneous isotropic turbulence, including only a weak Reynolds-number dependence of both the finest and largest scales. Systematic, but ${\mathit{Re}}_{\tau } $-independent, variations in the distributions and moments arise as the wall is approached for ${y}^{+ } \lesssim 100$. In the range $100\lt {y}^{+ } \lt 200$, there are substantial differences in the moments between the lowest and the two larger values of ${\mathit{Re}}_{\tau } $. This is most likely caused by coherent vortices from the near-wall region, which fill the whole channel for low ${\mathit{Re}}_{\tau } $.


2021 ◽  
Vol 931 ◽  
Author(s):  
Fujihiro Hamba

The energy spectrum is commonly used to describe the scale dependence of turbulent fluctuations in homogeneous isotropic turbulence. In contrast, one-point statistical quantities, such as the turbulent kinetic energy, are mainly employed for inhomogeneous turbulence models. Attempts have been made to describe the scale dependence of inhomogeneous turbulence using the second-order structure function and two-point velocity correlation. However, unlike the energy spectrum, expressions for the energy density in the scale space fail to satisfy the requirement of being non-negative. In this study, a new expression for the scale-space energy density based on filtered velocities is proposed to clarify the reasons behind the negative values of the energy density and to obtain a better understanding of inhomogeneous turbulence. The new expression consists of homogeneous and inhomogeneous parts; the former is always non-negative, while the latter can be negative because of the turbulence inhomogeneity. Direct numerical simulation data of homogeneous isotropic turbulence and a turbulent channel flow are used to evaluate the two parts of the energy density and turbulent energy. It was found that the inhomogeneous part of the turbulent energy shows non-zero values near the wall and at the centre of a channel flow. In particular, the inhomogeneous part of the energy density changes its sign depending on the scale. A concave profile of the filtered-velocity variance at the wall accounts for the negative value of the energy density in the region very close to the wall.


Sign in / Sign up

Export Citation Format

Share Document