Coherent Structures in the Near Wake of a Blunt Trailing Edge Profiled Body

Author(s):  
Lakshmana Sampat Doddipatla ◽  
Arash Naghib-Lahouthi ◽  
Horia Hangan ◽  
Kamran Siddiqui

Wake flows behind two dimensional bodies are mainly dominated by two coherent structures, namely the Karman-Benard vortices and the streamwise vortices, also referred to as rolls and ribs respectively. The three dimensional wake instabilities lead to distinct instability modes (mode-A, mode-B and mode-C or mode-S) depending on the flow Reynolds number and geometric shape. The present investigation explores the mechanism in which the flow transitions to three dimensionality in the near wake of a profiled leading edge and blunt trailing edge body. A combination of Planar Laser Induced Fluorescence visualizations and Particle Image Velcoimetry measurements are conducted in the Reynolds numbers ranging from 250 to 550. The results indicate that three instability modes (mode-A, mode-B and mode-C) appear in the wake transition to three dimensionality, and their order of appearance does not occur through the traditional route as observed in circular cylinder flows. It is found that mode-C instability with a spanwise spacing of 2.4D dominates the near wake development.

Author(s):  
Arash Naghib Lahouti ◽  
Lakshmana Sampat Doddipatla ◽  
Horia Hangan ◽  
Kamran Siddiqui

The wake of nominally two dimensional bluff bodies is dominated by von Ka´rma´n vortices, which are accompanied by three dimensional instabilities beyond a threshold Reynolds number. These three dimensional instabilities initiate as dislocations in the von Ka´rma´n vortices near the trailing edge, which evolve into pairs of counter-rotating vortices further downstream. The wavelength of the three dimensional instabilities depends on profile geometry and Reynolds number. In the present study, the three dimensional wake instabilities for a blunt trailing edge profiled body, composed of an elliptical leading edge and a rectangular trailing edge, have been studied in Reynolds numbers ranging from 500 to 1200, based on the thickness of the body. Numerical simulations, Laser Induced Fluorescence (LIF) flow visualization, and Particle Image Velocimetry (PIV) methods have been used to identify the instabilities. Proper Orthogonal Decomposition (POD) has been used to analyze the velocity field data measured using PIV. The results confirm the existence of three dimensional instabilities with an average wavelength of 2.0 to 2.5 times thickness of the body, in the near wake. The findings are in agreements with the values reported previously for different Reynolds numbers, and extend the range of Reynolds numbers in which the three dimensional instabilities are characterized.


Author(s):  
Arash Naghib Lahouti ◽  
Horia Hangan

Vortex shedding from the base of two dimensional bluff bodies is accompanied by three dimensional wake instabilities. These instabilities manifest as streamwise and vertical vorticity components which occur at a certain spanwise wavelength. The spanwise wavelength of the instabilities (λz) depends on several parameters, including profile geometry and Reynolds number. The present study aims to determine λz for a blunt trailing edge airfoil, which is comprised of an elliptical leading edge, followed by a rectangular section. Results of numerical simulations of flow around the airfoil at Re(d) = 500, 800, 1200, and 17,000, and flow visualization at Re(d) = 2200 indicate that λz has an average value of 2.2d. An active flow control mechanism based on the three dimensional wake instabilities is proposed, to attenuate the fluctuating aerodynamic forces of the airfoil. The mechanism is comprised of trailing edge injection ports distributed across the span, with a spacing equal to λz. Injection of a secondary flow leads to excitation of the three dimensional instabilities and disorganization of the von Ka´rma´n vortex street. Numerical simulations at Re(d) = 500 and 17,000 indicate that the flow control mechanism can attenuate the fluctuating aerodynamic forces significantly, and reduce mean drag using a relatively small injection mass flow rate.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Alvaro Gonzalez ◽  
Xabier Munduate

This work undertakes an aerodynamic analysis over the parked and the rotating NREL Phase VI wind turbine blade. The experimental sequences from NASA Ames wind tunnel selected for this study respond to the parked blade and the rotating configuration, both for the upwind, two-bladed wind turbine operating at nonyawed conditions. The objective is to bring some light into the nature of the flow field and especially the type of stall behavior observed when 2D aerofoil steady measurements are compared to the parked blade and the latter to the rotating one. From averaged pressure coefficients together with their standard deviation values, trailing and leading edge separated flow regions have been found, with the limitations of the repeatability of the flow encountered on the blade. Results for the parked blade show the progressive delay from tip to root of the trailing edge separation process, with respect to the 2D profile, and also reveal a local region of leading edge separated flow or bubble at the inner, 30% and 47% of the blade. For the rotating blade, results at inboard 30% and 47% stations show a dramatic suppression of the trailing edge separation, and the development of a leading edge separation structure connected with the extra lift.


2009 ◽  
Vol 643 ◽  
pp. 349-362 ◽  
Author(s):  
DAVID LO JACONO ◽  
JUSTIN S. LEONTINI ◽  
MARK C. THOMPSON ◽  
JOHN SHERIDAN

A study of the flow past an oscillatory rotating cylinder has been conducted, where the frequency of oscillation has been matched to the natural frequency of the vortex street generated in the wake of a stationary cylinder, at Reynolds number 300. The focus is on the wake transition to three-dimensional flow and, in particular, the changes induced in this transition by the addition of the oscillatory rotation. Using Floquet stability analysis, it is found that the fine-scale three-dimensional mode that typically dominates the wake at a Reynolds number beyond that at the second transition to three-dimensional flow (referred to as mode B) is suppressed for amplitudes of rotation beyond a critical amplitude, in agreement with past studies. However, the rotation does not suppress the development of three-dimensionality completely, as other modes are discovered that would lead to three-dimensional flow. In particular, the longer-wavelength mode that leads the three-dimensional transition in the wake of a stationary cylinder (referred to as mode A) is left essentially unaffected at low amplitudes of rotation. At higher amplitudes of oscillation, mode A is also suppressed as the two-dimensional near wake changes in character from a single- to a double-row wake; however, another mode is predicted to render the flow three-dimensional, dubbed mode D (for double row). This mode has the same spatio-temporal symmetries as mode A.


1998 ◽  
Vol 120 (2) ◽  
pp. 378-384
Author(s):  
S. D. Sharma ◽  
R. K. Sahoo

Experimental results, obtained from hot-wire measurements using a conditional sampling technique, demonstrate feasibility of controlling large-scale spanwise vortices (coherent structures) in the near wake region behind a rectangular base by means of suction through a slit at just one of the trailing edges. The suction thus employed, is found to influence the near wake topology with strong asymmetry and disturb the net vorticity balance. Moreover, a significant reduction in the base drag is achieved as a consequence of the trailing edge suction. The mechanism of the drag reduction is understood to lie in a marked change in the wake dynamics including attenuation in the size and strength of the coherent structures.


1988 ◽  
Vol 92 (914) ◽  
pp. 154-164 ◽  
Author(s):  
B. C. Hardy ◽  
S. P. Fiddes

SummaryA three-dimensional panel method has been used to calculate edge-suction forces for thin sharp-edged wings in incompressible flow. The suction forces have been used to estimate the vortex lift on the wings by means of the leading-edge suction analogy due to Polhamus.The results for planar wings are in acceptable agreement with other methods based on the suction analogy. A limited comparison with results from experiments for non-planar wings revealed good prediction of lift and drag increments associated with the deflection of leading and trailing edge flaps for ‘conventional’ wings of high sweep, but only moderate agreement for a grossly non-planar configuration.


Author(s):  
Yumin Xiao ◽  
R. S. Amano

A numerical study has been performed to predict a three-dimensional turbulent flow and end-wall heat transfer in a blade passage. The complex three-dimensional flow in the end-wall region has an important impact on the local heat transfer. The leading edge horseshoe vortex, the leading edge corner vortices, the passage vortex, and the trailing edge wake cause large variations in the entire end-wall region. The heat transfer distributions in the end-wall region are calculated and the mechanism for the high heat transfer region has been revealed. The calculations show that the algebraic turbulence model lacks the ability to predict the heat transfer in the transition region, but it is valid in other flow region. The local high heat transfer downstream of the trailing edge is enhanced by the wake downstream of the trailing edge. The horseshoe vortex results a high heat transfer region near the leading edge and induces the leading edge corner vortices which cause high heat transfer on the end-wall at both sides of blade end-wall corner.


1997 ◽  
Vol 330 ◽  
pp. 85-112 ◽  
Author(s):  
N. TOMBAZIS ◽  
P. W. BEARMAN

Experiments have been carried out to study the three-dimensional characteristics of vortex shedding from a half-ellipse shape with a blunt trailing edge. In order to control the occurrence of vortex dislocations, the trailing edges of the models used were constructed with a series of periodic waves across their spans. Flow visualization was carried out in a water tunnel at a Reynolds number of 2500, based on trailing-edge thickness. A number of shedding modes were observed and the sequence of mode transitions recorded. Quantitative data were obtained from wind tunnel measurements performed at a Reynolds number of 40000. Two shedding frequencies were recorded with the higher frequency occurring at spanwise positions coinciding with minima in the chord. At these same positions the base pressure was lowest and the vortex formation length longest. Arguments are put forward to explain these observations. It is shown that the concept of a universal Strouhal number holds, even when the flow is three-dimensional. The spanwise variation in time-average base pressure is predicted using the estimated amount of time the flow spends at the two shedding frequencies.


2011 ◽  
Vol 685 ◽  
pp. 117-145 ◽  
Author(s):  
Melissa A. Green ◽  
Clarence W. Rowley ◽  
Alexander J. Smits

AbstractParticle image velocimetry (PIV) is used to investigate the three-dimensional wakes of rigid pitching panels with a trapezoidal geometry, chosen to model idealized fish caudal fins. Experiments are performed for Strouhal numbers from 0.17 to 0.56 for two different trailing edge pitching amplitudes. A Lagrangian coherent structure (LCS) analysis is employed to investigate the formation and evolution of the panel wake. A classic reverse von Kármán vortex street pattern is observed along the mid-span of the near wake, but the vortices realign and exhibit strong interactions near the spanwise edges of the wake. At higher Strouhal numbers, the complexity of the wake increases downstream of the trailing edge as the spanwise vortices spread transversely and lose coherence as the wake splits. This wake transition is shown to correspond to a qualitative change in the LCS pattern surrounding each vortex core, and can be identified as a quantitative event that is not dependent on arbitrary threshold levels. The location of this transition is observed to depend on both the pitching amplitude and free stream velocity, but is not constant for a fixed Strouhal number. On the panel surface, the trapezoidal planform geometry is observed to create additional vortices along the swept edges that retain coherence for low Strouhal numbers or high sweep angles. These additional swept-edge structures are conjectured to add to the complex three-dimensional flow near the tips of the panel.


Sign in / Sign up

Export Citation Format

Share Document