Development and Application of Fan Noise Prediction Method to Axial and Centrifugal Fan

Author(s):  
Duck-Joo Lee ◽  
Wan-Ho Jeon ◽  
Ki-Hoon Chung

Numerical predictions of fan noise have not been studied extensively. This is due to the scattering effect of the fan casing, duct and the difficulty in obtaining aerodynamic acoustic source. New method to predict the fan noise and performance is developed and used to calculate various fan noise problems. A vortex method is used to model the fan and to calculate the flow field. Acoustic pressures are obtained from the unsteady force fluctuations of the blades using an acoustic analogy. But the acoustic analogy can be applied only in the free field in general. In order to consider the solid boundary effects of the casing, the newly developed Kirchhoff-Helmholtz BEM (Boundary Element Method) is introduced. With the above-mentioned method, the flow field and sound field of centrifugal and axial fan were calculated. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound. Also, in the predicted sound field, we can see the scattering effect of duct and casing.

2003 ◽  
Vol 03 (03) ◽  
pp. L259-L264
Author(s):  
Jian-Da Wu ◽  
Mingsian R. Bai

In this paper, a ring silencer design for reducing the noise of axial fans is presented. The noise sources on axial fans are usually caused by the fluctuating pressure distribution on the surface of fan blade. Most of the sources are near the trailing edge of blades or boundary region of blades. The ideation of proposed design is based on the principle of Helmholtz resonator for reducing the noise around the fan. The electro-acoustic analogy of this design is presented and simply discussed. Experimental measurement is carried out to evaluate the proposed design for reducing the axial fan noise. The result of experiment indicated that the ring silencer achieved 17 dB in blade passing frequency and 10 dB in other broadband frequency of power spectrum level.


Author(s):  
Zhenyu Wang ◽  
Hui Hu

We report the progress made in our recent study to develop an ultra-quiet axial fan for computer cooling applications. By using a commercially-available cooling fan as the baseline, a number of acoustically tailored modifications are implemented in order to reduce the noise level of the cooling fan, which includes optimizing the rotator blades and guide vanes according to axial fan design theory, adding an intake cone in the front of the hub to guide the airflow into the axial fan smoothly, and reducing the tip clearance to lower the noise generation due to tip vortex structures. A comparison study is conducted to measure the sound pressure level (SPL) of the reformed axial fan in an anechoic chamber, in comparison to that of the prototype fan, in order to assess the effects of the modifications on the fan noise reduction. The measurement results of our preliminary study reveal that, at the same flow rate, the SPL of the reformed fan would be up to 5 dB lower than that of the prototype fan. In addition to measuring the sound pressure levels (SPLs) of the fans, a digital particle image velocimetry (PIV) system is also used to conduct detailed flow field measurements to reveal the changes of the flow characteristics and unsteady vortex structures associated with the modifications. Besides conducting “free-run” PIV measurements to determine the ensemble-averaged statistics of the flow quantities such as mean velocity, Reynolds stress, and turbulence kinetic energy (TKE) distributions at the exit of the axial fan, “phase-locked” PIV measurements are also performed to elucidate further details about evolution of the unsteady vortex structures in fan exhaust in relation to the position of the rotating fan blades. The detailed flow field measurements are correlated with the SPL measurements in order to elucidate underlying physics associated with the fan noise reduction.


2021 ◽  
Vol 336 ◽  
pp. 01007
Author(s):  
Fan Qian ◽  
Minghui Hu

Aiming at the internal leakage problem of spring type nuclear safety valve at the sealing surface, the flow field and sound field characteristics at the leakage height of 0.5mm between the valve disc and the valve seat sealing surface were studied, and the numerical simulation was carried out based on large eddy simulation(LES) and mohring acoustic analogy method, and compare the effects of acoustic wall pressure fluctuation(AWPF) and turbulent wall pressure fluctuation(TWPF) as the excitation source on the external sound field of the valve. The simulation results show that: the change gradient of velocity field and pressure field at the leakage port of safety valve is significant and form vortices of different sizes. The small-scale vortices are mainly in the leakage port, while the large-scale vortices mainly exist in the flow channel; When the valve is leaking, the noise is mainly dominated by high-pressure injection noise, its spectrum curve shows wide-band characteristics, and the external noise of the valve is mainly caused by AW P F. The above research results can provide a theoretical basis for the safety valve online detection method.


Author(s):  
Mingyuan Li ◽  
Jianzhang Liu ◽  
Yan Wei ◽  
Fengzhong Qu ◽  
Minhao Zhang ◽  
...  

Abstract Underwater acoustic communication is an important technology in deep-sea research. In underwater acoustic communication system, when hydrophone as acoustic receiver is exposed to sea environment and moves along with an underwater vehicle, its performance is prone to be affected by various ambient noises, among which its generated flow noise is the major source. This would especially influence the performance and shorten the communication distance of underwater acoustic communication system. In this paper, we try to unveil how the flow field is correlated with the flow noise of hydrophone. The Large Eddy Simulation (LES) method and acoustic analogy were used to simulate the flow field and the sound field around hydrophone, respectively. The flow noise of hydrophone at different moving velocities was obtained. Then experiments in an anechoic tank were carried out to verify the simulation results. The subsequent analysis of the experimental results shows that the flow noise has obvious influence on underwater communication, and as the hydrophone moves faster, its sound pressure level climbs up higher. This study also further verifies the reliability of simulating the flow noise of bare hydrophone by computational fluid dynamics, and provides the theoretical basis for improving the signal-to-noise ratio of low-frequency underwater acoustic communication system.


2012 ◽  
Vol 251 ◽  
pp. 15-20
Author(s):  
Bo Wan ◽  
Xue Fei Liang ◽  
Tao Sun

Centrifugal fan is a kind of widely used turbo machinery. It is widely used in buildings, mines, factories, tunnels, vehicles, ships and air cooling towers and cooling; grain drying and sending; inflatable hovercraft and propulsion. It has many advantages compared to axial fan. In this paper, we study the numerical simulation of the whole flow field of a High-pressure centrifugal fan called 9-16№15.9D.The researches can contribute to a better design on centrifugal fan.


Author(s):  
Zhenyu Wang ◽  
Hui Hu

We report the progress made in our recent study to develop an ultra-quiet axial fan for computer cooling applications. By using a commercially-available cooling fan as the baseline, a number of acoustically tailored modifications are implemented in order to reduce the noise level of the cooling fan, which includes optimizing the rotating blades and guide vanes according to axial fan design theory, adding an intake cone in the front of the hub to guide the airflow into the axial fan smoothly, and reducing the tip clearance to lower the noise generation due to tip vortex structures. A comparison study is conducted to measure the sound pressure level (SPL) of the new-design axial fan in an anechoic chamber, in comparison to that of the baseline fan, in order to assess the effects of the modifications on the fan noise reduction. The measurement results of our study reveal that, at the same flow rate, the SPL of the new-design fan would be up to 5 dB lower than that of the baseline fan. In addition to measuring the sound pressure levels (SPLs) of the fans, a digital particle image velocimetry (PIV) system is also used to conduct detailed flow field measurements to reveal the changes of the flow characteristics and unsteady vortex structures associated with the modifications. “Time-averaged” PIV measurements illustrate the ensemble-averaged statistics of the flow quantities such as mean velocity, Reynolds stress, and turbulence kinetic energy (TKE) distributions at the flow field around the axial fan. Moreover, a numerical study of the new-design fan is also performed and which is aimed to investigate the flow details inside of the fan. The validation comparison between numerical results and experimental results agree very well and that gives the strong confidence for the computational flow field in the fan can be regarded as useful complement for experiments. The detailed flow field measurements are correlated with the SPL measurements in order to elucidate underlying physics associated with the fan noise reduction.


Author(s):  
Jiandong Chen ◽  
Beibei Sun ◽  
Jianrun Zhang ◽  
Fei Xue ◽  
Xin Liu

Centrifugal blowers are widely used as garden machines, however, the aerodynamic noise generated by these machines cause serious problems. Although many researches focus on the generation mechanism and prediction method of centrifugal fan noise, most of these researches analysis the simplified centrifugal fan models and ignore the diffraction and scattering effect. In this paper, both experimental and numerical methods are carried out to analysis and measure the aerodynamic noise of the centrifugal blower. In order to calculate the flow field, a CFD (Computational Fluid Dynamics) numerical model is established, and the LES (Large Eddy Simulation) model is used to solve the three-dimensional unsteady flow, while the FW-H (Ffows Williams-Hawkings) model is used to calculate the acoustic source. To consider the diffraction and scattering effect, a BEM method is used to predict the sound radiated from the blower. A parallel experiment is carried out to measure the aerodynamic noise in a semi-anechoic room, and the numerical result shows a good agreement with the experiment result. The effect of outlet and inlet ducts on the sound radiation of the centrifugal blower is also investigated in this paper.


AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 1095-1098 ◽  
Author(s):  
Jeonghan Lee ◽  
Kyungseok Cho ◽  
Soogab Lee

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 886
Author(s):  
Cui Dai ◽  
Chao Guo ◽  
Yiping Chen ◽  
Liang Dong ◽  
Houlin Liu

The strong noise generated during the operation of the centrifugal pump harms the pump group and people. In order to decrease the noise of the centrifugal pump, a specific speed of 117.3 of the centrifugal pump is chosen as a research object. The bionic modification of centrifugal pump blades is carried out to explore the influence of different bionic structures on the noise reduction performance of centrifugal pumps. The internal flow field and internal sound field of bionic blades are studied by numerical calculation and test methods. The test is carried out on a closed pump test platform which includes external characteristics and a flow noise test system. The effects of two different bionic structures on the external characteristics, acoustic amplitude–frequency characteristics and flow field structure of a centrifugal pump, are analyzed. The results show that the pit structure has little influence on the external characteristic parameters, while the sawtooth structure has a relatively great influence. The noise reduction effect of the pit structure is aimed at the wide-band noise, while the sawtooth structure is aimed at the discrete noise of the blade-passing frequency (BPF) and its frequency doubling. The noise reduction ability of the sawtooth structure is not suitable for high-frequency bands.


2000 ◽  
Vol 124 (1) ◽  
pp. 140-146 ◽  
Author(s):  
V. Schramm ◽  
K. Willenborg ◽  
S. Kim ◽  
S. Wittig

This paper reports numerical predictions and measurements of the flow field in a stepped labyrinth seal. The theoretical work and the experimental investigations were successfully combined to gain a comprehensive understanding of the flow patterns existing in such elements. In order to identify the influence of the honeycomb structure, a smooth stator as well as a seal configuration with a honeycomb facing mounted on the stator wall were investigated. The seal geometry is representative of typical three-step labyrinth seals of modern aero engines. The flow field was predicted using a commercial finite volume code with the standard k-ε turbulence model. The computational grid includes the basic seal geometry as well as the three-dimensional honeycomb structures.


Sign in / Sign up

Export Citation Format

Share Document