scholarly journals Analysis of the Influence of Different Bionic Structures on the Noise Reduction Performance of the Centrifugal Pump

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 886
Author(s):  
Cui Dai ◽  
Chao Guo ◽  
Yiping Chen ◽  
Liang Dong ◽  
Houlin Liu

The strong noise generated during the operation of the centrifugal pump harms the pump group and people. In order to decrease the noise of the centrifugal pump, a specific speed of 117.3 of the centrifugal pump is chosen as a research object. The bionic modification of centrifugal pump blades is carried out to explore the influence of different bionic structures on the noise reduction performance of centrifugal pumps. The internal flow field and internal sound field of bionic blades are studied by numerical calculation and test methods. The test is carried out on a closed pump test platform which includes external characteristics and a flow noise test system. The effects of two different bionic structures on the external characteristics, acoustic amplitude–frequency characteristics and flow field structure of a centrifugal pump, are analyzed. The results show that the pit structure has little influence on the external characteristic parameters, while the sawtooth structure has a relatively great influence. The noise reduction effect of the pit structure is aimed at the wide-band noise, while the sawtooth structure is aimed at the discrete noise of the blade-passing frequency (BPF) and its frequency doubling. The noise reduction ability of the sawtooth structure is not suitable for high-frequency bands.

Author(s):  
Weihui Xu ◽  
Xiaoke He ◽  
Xiao Hou ◽  
Zhihao Huang ◽  
Weishu Wang

AbstractCavitation is a phenomenon that occurs easily during rotation of fluid machinery and can decrease the performance of a pump, thereby resulting in damage to flow passage components. To study the influence of wall roughness on the cavitation performance of a centrifugal pump, a three-dimensional model of internal flow field of a centrifugal pump was constructed and a numerical simulation of cavitation in the flow field was conducted with ANSYS CFX software based on the Reynolds normalization group k-epsilon turbulence model and Zwart cavitation model. The cavitation can be further divided into four stages: cavitation inception, cavitation development, critical cavitation, and fracture cavitation. Influencing laws of wall roughness of the blade surface on the cavitation performance of a centrifugal pump were analyzed. Research results demonstrate that in the design process of centrifugal pumps, decreasing the wall roughness appropriately during the cavitation development and critical cavitation is important to effectively improve the cavitation performance of pumps. Moreover, a number of nucleation sites on the blade surface increase with the increase in wall roughness, thereby expanding the low-pressure area of the blade. Research conclusions can provide theoretical references to improve cavitation performance and optimize the structural design of the pump.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668529 ◽  
Author(s):  
Wen-wu Song ◽  
Li-chao Wei ◽  
Jie Fu ◽  
Jian-wei Shi ◽  
Xiu-xin Yang ◽  
...  

The backflow vortexes at the suction connection in high-speed centrifugal pumps have negative effect on the flow field. Setting an orifice plate in front of the inducer is able to decrease the negative effect caused by backflow vortexes. The traditional plate is able to partially control the backflow vortexes, but a small part of the vortex is still in the inlet and the inducer. Four new types of orifice plates were created, and the control effects on backflow vortexes were analyzed. The ANSYS-CFX software was used to numerically simulate a high-speed centrifugal pump. The variations of streamline and velocity vectors at the suction connection were analyzed. Meanwhile, the effects of these plates on the impeller pressure and the internal flow field of the inducer were analyzed. Numerically, simulation and experimental data analysis methods were used to compare the head and efficiency of the high-speed pumps. The results show that the C-type orifice plate can improve the backflow vortex, reduce the low-pressure area, and improve the hydraulic performance of the high-speed pump.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jingze Li ◽  
Dongrong Meng ◽  
Xun Qiao

Centrifugal pumps as turbine (PAT) are widely used in petrochemical and water conservancy industries. The research on the internal flow field and energy loss of PAT is of great significance to improve the performance and efficiency of PAT. In this paper, experimental and numerical simulation methods are used to study the energy loss and flow field. The results show that the numerical simulation method can accurately simulate the internal flow field of PAT. And the entropy generation theory is applied to visualize the internal energy loss of PAT through the comparison of total pressure loss and entropy generation. The highest energy loss among PAT components is the guide vane. The loss in the guide vane is mainly caused by the flow separation caused by the wake of the guide vane and the asymmetric structure of the volute. The losses in the impeller are mainly due to flow separation and wake. Besides, the unsteady simulation results show that rotor-stator interaction has a great influence on the gap between the impeller and the guide vane. The research results provide a reference for the design of the PAT. This study is beneficial to studying the dynamic and static interference and PAT vibration to improve the stability of the PAT.


Author(s):  
Jia Li ◽  
Xin Wang ◽  
Wancheng Wang ◽  
Yue Wang

This paper presents a high-speed aero-fuel centrifugal pump with an active inlet injector for an aero-engine aiming at regulating the internal flow field and improving overall hydraulic performance. Unlike most of the existing centrifugal pumps for aero-engines, an injector is designed and integrated with the pump to accomplish the active flow control. Firstly, by employing the energy equation in the pump, reasonable geometrical parameters of the injector are calculated. Then, a validation study is conducted with three known turbulence models, showing that simulations with the RNG κ- ε turbulence model can accurately predict the head and efficiency of the experimental pump. Finally, simulation results with the determined turbulence model are discussed. The results show that the static pressure is uniformly distributed inside the impeller, the volute and the injector. The flow field is significantly ameliorated by improving the pressure inside the suction pipe and controlling the flow direction via the injector. Furthermore, the head and efficiency of the designed pump with an active inlet injector are improved compared to the one without an injector.


2021 ◽  
Vol 9 (2) ◽  
pp. 121
Author(s):  
Yang Yang ◽  
Ling Zhou ◽  
Hongtao Zhou ◽  
Wanning Lv ◽  
Jian Wang ◽  
...  

Marine centrifugal pumps are mostly used on board ship, for transferring liquid from one point to another. Based on the combination of orthogonal testing and numerical simulation, this paper optimizes the structure of a drainage trough for a typical low-specific speed centrifugal pump, determines the priority of the various geometric factors of the drainage trough on the pump performance, and obtains the optimal impeller drainage trough scheme. The influence of drainage tank structure on the internal flow of a low-specific speed centrifugal pump is also analyzed. First, based on the experimental validation of the initial model, it is determined that the numerical simulation method used in this paper is highly accurate in predicting the performance of low-specific speed centrifugal pumps. Secondly, based on the three factors and four levels of the impeller drainage trough in the orthogonal test, the orthogonal test plan is determined and the orthogonal test results are analyzed. This work found that slit diameter and slit width have a large impact on the performance of low-specific speed centrifugal pumps, while long and short vane lap lengths have less impact. Finally, we compared the internal flow distribution between the initial model and the optimized model, and found that the slit structure could effectively reduce the pressure difference between the suction side and the pressure side of the blade. By weakening the large-scale vortex in the flow path and reducing the hydraulic losses, the drainage trough impellers obtained based on orthogonal tests can significantly improve the hydraulic efficiency of low-specific speed centrifugal pumps.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 919
Author(s):  
Jia Li ◽  
Xin Wang ◽  
Yue Wang ◽  
Wancheng Wang ◽  
Baibing Chen ◽  
...  

Aero-fuel centrifugal pumps are important power plants in aero-engines. Unlike most of the existing centrifugal pumps, a combination impeller is integrated with the pump to improve performance. First, the critical geometrical parameters of the combination impeller and volute are given. Then, the effects of the combination impeller on the flow characteristics of the impeller and volute are clarified by comparing simulation results with that of the conventional impeller, where the effectiveness of the selected numerical method is validated by an acceptable agreement between simulation and experiment. Finally, the experiment is set to test the external performance of the studied pump. A significant feature of this study is that the flow characteristics are significantly ameliorated by reducing the flow losses that emerged in the impeller inlet, impeller outlet, and volute tongue. Correspondingly, the head and efficiency of a combination impeller are higher with comparison to a conventional impeller. Consequently, it is a promising approach in ameliorating the flow field and improving external performance by applying a combination impeller to an aero-fuel centrifugal pump.


2013 ◽  
Vol 385-386 ◽  
pp. 93-96
Author(s):  
Hong Ji ◽  
Wei Guo Zhu ◽  
Song Chen ◽  
Jing Zhao

The hydraulic cone valve is an important basic component in Fluid drive and control technology. Characteristic of cone valve inner flow filed influences directly the valves performance. Especially when fluid flow in runner is turbulent, characteristics of flow field have great influence on the valves working performance.Main work of this paper is numerical calculation and simulation of cone valve inner runner flow field inside hydraulic hammer. First make a 3D modeling for cone valve using Pro/E, by fluent this paper analyses and discusses the distribution of hydraulic cone valve internal flow field including flow velocity field, pressure field and flow, etc when the cone valve core taper angle is 30°, the gap is 0.5 mm, and inlet velocity is different, analyses position and strength of the vortex, and finds out the main reason for energy consumption.The results of the study show that by the optimal design of the cone valve seat, the density degree of the flow and the size of the vortex is reduced, the energy loss is reduced, negative pressure zone also changes, the noise is reduced and the energy utilization is improved.


Author(s):  
XiaoMei Guo ◽  
ZuChao Zhu ◽  
BaoLing Cui ◽  
Yi Li

AbstractDesigning inducer is one of the effective ways to improve the suction performance of high-speed centrifugal pumps. The operation condition including rotational speeds can affect the internal flow and external performance of high-speed centrifugal pumps with an inducer. In order to clarify the rotating cavitation performance of a centrifugal pump with a splitter-bladed inducer under different rotational speed, a centrifugal pump with a splitter-bladed inducer is investigated in the work. By using Rayleigh–Plesset equations and Mixture model, the cavitation flow of centrifugal pump is numerically simulated, as well as the external performance experimental test is carried out. It is found that the cavitation area increases with the rotational speeds. The location of the passage where cavitation is easy to appear is explored. Asymmetric cavitation behavior is observed. That, the trail of the inducer is easy to take cavitation when the rotational speed is increased to a degree, is also observed. The trend of


2012 ◽  
Vol 252 ◽  
pp. 3-8
Author(s):  
Yun Shan Bai ◽  
Yi Jiang ◽  
Dong Mo Zhou

Adopting concentric canister launchers (CCL), high temperature and high pressure environment of CCL is unfavorable for the missile launch. In addition to the gap between internal canister and external canister, injecting water for cooling are the main factor of impact the canister flow field, CCL’s rough wall is also a very important influence factor. In this paper, under the two working conditions of rough wall and smooth wall, use dynamic layering manner of moving mesh update method to simulate concentric canister missile launch process. The results reveal that rough wall has a great influence for pressure of concentric canister internal flow field, but the least influence for temperature. In practical engineering applications, need smooth surface material for smooth flow field exhaust when manufacturing concentric cylinder, but the non-concentric canister manufacturing of missile cold-launch canister, retain the rough wall can increase the pressure of the missile launch, this is conducive to missile launch, and also saves manufacturing costs, reduces processing procedures.


Sign in / Sign up

Export Citation Format

Share Document