Unsteady Flow Analysis of the Vertical Axis Cross-Flow Wind Turbine

Author(s):  
E. Ejiri ◽  
S. Yabe ◽  
S. Hase ◽  
M. Ogiwara

Flow through the vertical axis cross-flow wind turbine was analyzed using computational fluid dynamics (CFD) to clarify current aerodynamic issues and to propose an improved design configuration for achieving better performance. The computed torque coefficients and power coefficients of a reference cross-flow wind turbine runner were compared with the experimental results. Flow around each blade of the turbine runner was then investigated based on the computed flow results. As a countermeasure to the issues found, a new wind turbine design was devised which has two guide vanes point-symmetrically arranged outside the turbine runner. It was experimentally shown that this improved design with the guide vanes increased turbine efficiency. However, performance predictions by CFD lack sufficient accuracy in the case of the turbine runner with the guide vanes, where complexity and unsteadiness prevail over the entire flow fields.

2018 ◽  
Vol 42 (4) ◽  
pp. 404-415
Author(s):  
H. Abu-Thuraia ◽  
C. Aygun ◽  
M. Paraschivoiu ◽  
M.A. Allard

Advances in wind power and tidal power have matured considerably to offer clean and sustainable energy alternatives. Nevertheless, distributed small-scale energy production from wind in urban areas has been disappointing because of very low efficiencies of the turbines. A novel wind turbine design — a seven-bladed Savonius vertical-axis wind turbine (VAWT) that is horizontally oriented inside a diffuser shroud and mounted on top of a building — has been shown to overcome the drawback of low efficiency. The objective this study was to analyze the performance of this novel wind turbine design for different wind directions and for different guide vanes placed at the entrance of the diffuser shroud. The flow field over the turbine and guide vanes was analyzed using computational fluid dynamics (CFD) on a 3D grid for multiple tip-speed ratios (TSRs). Four wind directions and three guide-vane angles were analyzed. The wind-direction analysis indicates that the power coefficient decreases to about half when the wind is oriented at 45° to the main axis of the turbine. The analysis of the guide vanes indicates a maximum power coefficient of 0.33 at a vane angle of 55°.


2005 ◽  
Vol 2005.44 (0) ◽  
pp. 80-81
Author(s):  
Kouki Kishinami ◽  
Jyunn Suzuki ◽  
Himsar Ambarita ◽  
Norihei Kon ◽  
Syouji Oono ◽  
...  

2018 ◽  
Author(s):  
Andreas Wibowo ◽  
Dominicus Danardono Dwi Prija Tjahjana ◽  
Budi Santoso ◽  
Marcelinus Risky Clinton Situmorang

2015 ◽  
Author(s):  
Jubilee Prasad Rao ◽  
F. Javier Diez

A novel wind turbine design is proposed that increases turbine efficiency. The design consists of blades symmetrically positioned around a vertical axis. The blades experience cyclic pitch variations while rotating about the axis. The pitch variation is accomplished by an innovative mechanism that rotates the blades about a horizontal axis during rotation of the turbine. This controlled pitch variation allows the blades travelling upstream to be oriented horizontally so minimum drag is obtained. On the other hand, the blades travelling downstream are oriented vertically so maximum drag is achieved. Since the aiding downstream drag is maximum and the adverse upstream drag is minimum, this configuration allows for higher power output compared to conventional vertical axis wind turbines. Experiments on the turbine conducted in a water tunnel suggest an increase in power efficiencies.


2021 ◽  
pp. 0309524X2110039
Author(s):  
Amgad Dessoky ◽  
Thorsten Lutz ◽  
Ewald Krämer

The present paper investigates the aerodynamic and aeroacoustic characteristics of the H-rotor Darrieus vertical axis wind turbine (VAWT) combined with very promising energy conversion and steering technology; a fixed guide-vanes. The main scope of the current work is to enhance the aerodynamic performance and assess the noise production accomplished with such enhancement. The studies are carried out in two phases; the first phase is a parametric 2D CFD simulation employing the unsteady Reynolds-averaged Navier-Stokes (URANS) approach to optimize the design parameters of the guide-vanes. The second phase is a 3D CFD simulation of the full turbine using a higher-order numerical scheme and a hybrid RANS/LES (DDES) method. The guide-vanes show a superior power augmentation, about 42% increase in the power coefficient at λ = 2.75, with a slightly noisy operation and completely change the signal directivity. A remarkable difference in power coefficient is observed between 2D and 3D models at the high-speed ratios stems from the 3D effect. As a result, a 3D simulation of the capped Darrieus turbine is carried out, and then a noise assessment of such configuration is assessed. The results show a 20% increase in power coefficient by using the cap, without significant change in the noise signal.


Author(s):  
J. A. Chattha ◽  
M. S. Khan ◽  
H. Iftekhar ◽  
S. Shahid

Pakistan has a hydro potential of approximately 42,000MW; however only 7,000MW is being utilized for electrical power production [1, 2]. Out of 42,000 MW, micro hydro potential is about 1,300MW [1, 2]. For typical site conditions (available flow rate and head) in Pakistan, Cross Flow Turbines (CFTs) are best suited for medium head 5–150m [3] for micro-hydro power production. The design of CFT generally includes details of; the diameter of the CFT runner, number of blades, radius of curvature and diameter ratio. This paper discusses the design of various CFTs for typical Pakistan site conditions in order to standardize the design of CFTs based on efficiency that is best suited for a given site conditions. The turbine efficiency as a function of specific speed will provide a guide for cross flow turbine selection based on standardized turbine for manufacturing purposes. Standardization of CFT design will not only facilitate manufacturing of CFT based on the available site conditions with high turbine efficiency but also result in reduced manufacturing cost.


Author(s):  
Waled Yahya ◽  
Kou Ziming ◽  
Wu Juan ◽  
Mohammed Al-Nehari ◽  
Li Tengyu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document