Current Status on High Performance Computing for Vehicle Aerodynamics Using Large Eddy Simulation

Author(s):  
Makoto Tsubokura ◽  
Takuji Nakashima ◽  
Nobuyuki Oshima ◽  
Kozo Kitoh ◽  
Huilai Zhang ◽  
...  

The world’s largest class unsteady turbulence simulations of flow around vehicles were conducted using Large Eddy Simulation (LES) on the Earth Simulator in Japan. The main objective of our study is to investigate the validity of LES, as an alternative to a conventional wind tunnel measurement or the Reynolds Averaged Navier-Stokes method, for the assessment of vehicle aerodynamics.

Author(s):  
N. Gourdain ◽  
F. Sicot ◽  
F. Duchaine ◽  
L. Gicquel

A better understanding of turbulent unsteady flows is a necessary step towards a breakthrough in the design of modern compressors. Owing to high Reynolds numbers and very complex geometry, the flow that develops in such industrial machines is extremely hard to predict. At this time, the most popular method to simulate these flows is still based on a Reynolds-averaged Navier–Stokes approach. However, there is some evidence that this formalism is not accurate for these components, especially when a description of time-dependent turbulent flows is desired. With the increase in computing power, large eddy simulation (LES) emerges as a promising technique to improve both knowledge of complex physics and reliability of flow solver predictions. The objective of the paper is thus to give an overview of the current status of LES for industrial compressor flows as well as to propose future research axes regarding the use of LES for compressor design. While the use of wall-resolved LES for industrial multistage compressors at realistic Reynolds number should not be ready before 2035, some possibilities exist to reduce the cost of LES, such as wall modelling and the adaptation of the phase-lag condition. This paper also points out the necessity to combine LES to techniques able to tackle complex geometries. Indeed LES alone, i.e. without prior knowledge of such flows for grid construction or the prohibitive yet ideal use of fully homogeneous meshes to predict compressor flows, is quite limited today.


2013 ◽  
Vol 16 (2) ◽  
pp. 77-88 ◽  
Author(s):  
Amer Avdić ◽  
Guido Kuenne ◽  
Anja Ketelheun ◽  
Amsini Sadiki ◽  
Suad Jakirlić ◽  
...  

AIAA Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Tanner B. Nielsen ◽  
Jack R. Edwards ◽  
Harsha K. Chelliah ◽  
Damien Lieber ◽  
Clayton Geipel ◽  
...  

Author(s):  
Albert Ruprecht ◽  
Ralf Neubauer ◽  
Thomas Helmrich

The vortex instability in a spherical pipe trifurcation is investigated by applying a Very Large Eddy Simulation (VLES). For this approach an new adaptive turbulence model based on an extended version of the k-ε model is used. Applying a classical Reynolds-averaged Navier-Stokes-Simulation with the standard k-ε model is not able to forecast the vortex instability. However the prescribed VLES method is capable to predict this flow phenomenon. The obtained results show a reasonable agreement with measurements in a model test.


2018 ◽  
Author(s):  
Jiajun Chen ◽  
Yue Sun ◽  
Hang Zhang ◽  
Dakui Feng ◽  
Zhiguo Zhang

Mixing in pipe junctions can play an important role in exciting force and distribution of flow in pipe network. This paper investigated the cross pipe junction and proposed an improved plan, Y-shaped pipe junction. The numerical study of a three-dimensional pipe junction was performed for calculation and improved understanding of flow feature in pipe. The filtered Navier–Stokes equations were used to perform the large-eddy simulation of the unsteady incompressible flow in pipe. From the analysis of these results, it clearly appears that the vortex strength and velocity non-uniformity of centerline, can be reduced by Y-shaped junction. The Y-shaped junction not only has better flow characteristic, but also reduces head loss and exciting force. The results of the three-dimensional improvement analysis of junction can be used in the design of pipe network for industry.


Author(s):  
Lara Schembri Puglisevich ◽  
Gary Page

Unsteady Large Eddy Simulation (LES) is carried out for the flow around a bluff body equipped with an underbody rear diffuser in close proximity to the ground, representing an automotive diffuser. The goal is to demonstrate the ability of LES to model underbody vortical flow features at experimental Reynolds numbers (1.01 × 106 based on model height and incoming velocity). The scope of the time-dependent simulations is not to improve on Reynolds-Averaged Navier Stokes (RANS), but to give further insight into vortex formation and progression, allowing better understanding of the flow, hence allowing more control. Vortical flow structures in the diffuser region, along the sides and top surface of the bluff body are successfully modelled. Differences between instantaneous and time-averaged flow structures are presented and explained. Comparisons to pressure measurements from wind tunnel experiments on an identical bluff body model shows a good level of agreement.


Sign in / Sign up

Export Citation Format

Share Document