vehicle aerodynamics
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 25)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Rohit Jadhav

Abstract: Growing population of vehicles is one the biggest global concern and it led to traffic problems and creates congestion. People are not getting place to park their vehicles. Travel by car for shorter distance also stressful and time consuming because they have to face road traffic and usually cars are big at size so, to travel by car on road need more spacious and traffic free roads. that’s why some manufacturers start designing & manufacturing One seater vehicle which can easily transportable and create less congestion. If a single person wants to ride somewhere then he doesn’t have to take large car for one person, He can use single seater vehicle. In this assignment I have Designed and Tested a single seater electric vehicle which can easily transportable, compact and personal commuter vehicle (PMV). Keywords: CFD analysis, Aerodynamics analysis, automotive vehicle system, 3D modelling, pressure plot, performance optimization, vehicle aerodynamics.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Kaloki L. Nabutola ◽  
Sandra K. S. Boetcher

AbstractAerodynamic drag is a large resistance force to vehicle motion, particularly at highway speeds. Conventional wheel deflectors were designed to reduce the wheel drag and, consequently, the overall vehicle drag; however, they may actually be detrimental to vehicle aerodynamics in modern designs. In the present study, computational fluid dynamics simulations were conducted on the notchback DrivAer model—a simplified, yet realistic, open-source vehicle model that incorporates features of a modern passenger vehicle. Conventional and air-jet wheel deflectors upstream of the front wheels were introduced to assess the effect of underbody-flow deflection on the vehicle drag. Conventional wheel-deflector designs with varying heights were observed and compared to 45∘ and 90∘ air-jet wheel deflectors. The conventional wheel deflectors reduced wheel drag but resulted in an overall drag increase of up to 10%. For the cases studied, the 90∘ air jet did not reduce the overall drag compared to the baseline case; the 45∘ air jet presented drag benefits of up to 1.5% at 35 m/s and above. Compared to conventional wheel deflectors, air-jet wheel deflectors have the potential to reduce vehicle drag to a greater extent and present the benefit of being turned off at lower speeds when flow deflection is undesirable, thus improving efficiency and reducing emissions.


Author(s):  
Veenam Varaprasad

Nowadays with increase in competition in automobile sector, vehicle aerodynamics plays an important role. Aerodynamics affect the performance of vehicle due to change in parameters such as lift and drag force which plays a significant role at high speeds. With improvement in computer technology, manufacturers are looking toward computational fluid dynamics instead of wind tunnel testing to reduce the testing time and keeps the cost of R&D low. In this paper, lift and drag of production vehicle are determined by the analysis of flow of air around it using Ansys 18.0. After that, analysis was done on the car with different engine hood angles. Based on Cl and Cd values, optimal model was selected. To validate steady state results, transient state analysis was done on this optimal model. By introducing this considerably reduce the drag and increase lift hence improves the performance of vehicle.


Designs ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 45
Author(s):  
Laura Porcar ◽  
Willem Toet ◽  
Pedro Javier Gamez-Montero

Diffusers and the floor ahead of them create the majority of the downforce a vehicle creates. Outside motorsports, the diffuser is relatively unused, although its interaction with the ground is a consistent field of study owing to the aerodynamic benefits. The diffuser flow behavior is governed by three fluid-mechanical mechanisms: ground interaction, underbody upsweep, and diffuser upsweep. In addition, four different flow regimes appear when varying ride height, the vortices of which have great importance on downforce generation. The present study focuses on the diffuser’s fluid-dynamic characteristics undertaken within an academic framework with the objective of finding and understanding a high level of performance in these elements. Once the functioning of diffusers has been analyzed and understood, a new configuration is proposed: rear vertical airfoil endplates. The aim of the paper is to study the effect in performance of vertical airfoil endplates on diffusers in vehicle aerodynamics in a simplified geometry. The candidate to this geometry is the inversed Ahmed body, a geometry that is used as a model that simulates the flow behavior of car diffusers. Three different diffuser configurations are performed, namely 0° diffuser, 25° diffuser, and in the third case vertically installed rear vertical airfoil endplates are added to the 25° diffuser Ahmed body to change the flow field. These analyses are carried out by using open-source CFD simulation software OpenFOAM. An inlet velocity of 20 m/s is considered, as this is a typical velocity when cornering in motorsport. It is concluded that the 25° diffuser configuration generated more downforce than the 0° diffuser, which makes sense as the aim of adding a diffuser is to increase the amount of downforce produced. In addition, and as a result of the newly proposed configuration, the 25° diffuser Ahmed body with the vertical airfoil endplates emerges in a substantial increase of downforce thanks to the low-pressure zone generated at the back of the body.


Author(s):  
Kaloki Nabutola ◽  
Sandra Boetcher

Abstract Vehicle aerodynamics plays an important role in reducing fuel consumption. The underbody contributes to around 50% of the overall drag of a vehicle. As part of the underbody, the wheels and wheelhouses contribute to approximately 25-30% of the overall drag of a vehicle. As a result, wheel aerodynamics studies have been gaining popularity. However, a consensus of an appropriate turbulence model has not been reached, partially due to the lack of experiments appropriate for turbulence model validation studies for this type of flow. Seven turbulence models were used to simulate the flow within the wheelhouse of a simplified vehicle body, and results were shown to be incongruous with commonly used experimental data. The performance of each model was evaluated by comparing the aerodynamic coefficients obtained using computational fluid dynamics (CFD) to data collected from the Fabijanic wind tunnel experiments. The various turbulence models generally agreed with each other when determining average values, such a mean drag and lift coefficients, even if the particular values did not fall within the uncertainty of the experiment; however, they exhibited differences in the level of resolution in the flow structures within the wheelhouse. These flow structures are not able to be validated with currently available experimental data. Properly resolving flow structures is important when implementing flow control devices to reduce drag. Results from this study emphasize the need for spatially and time-resolved experiments, especially for validating LES and DES for flow within a wheelhouse.


Author(s):  
Aleksandra Anna Rejniak ◽  
Alvin Gatto

A new method for supporting ground vehicle wind tunnel models is proposed. The technique employs a centrally mounted sting connecting the front face of the vehicle, adjacent to the floor, to a fixed point further upstream. Experiments were conducted on a 1/24th-scale model, representative of a Heavy Goods Vehicle, at a width-based Reynolds number of 2.3 × 105, with detailed comparisons made to more established support methodologies. Changes to mean drag coefficients, base pressures and wake velocities are all evaluated and assessed from both time-independent and time-dependent perspectives, with a particular focus within the wake region. Results show subtle changes in drag coefficient, together with discrete modifications to the flow-field, dependent on the method adopted. Subtle differences in base pressures and wake formation are also identified, with mounting the model upstream found to demonstrate retention of many of the beneficial effects of other techniques without suffering their deficiencies. Overall, these results identify the upstream mounting methodology as a viable alternative to currently available and more well-established techniques used to facilitate wind tunnel aerodynamic interrogation.


2020 ◽  
pp. 231-241
Author(s):  
G. K. Awari ◽  
V. S. Kumbhar ◽  
R. B. Tirpude
Keyword(s):  

ATZ worldwide ◽  
2020 ◽  
Vol 122 (10) ◽  
pp. 54-59
Author(s):  
Daniel Demel ◽  
Peter Kostorz ◽  
Thomas Schütz ◽  
Sven Grundmann

Sign in / Sign up

Export Citation Format

Share Document