Improvement in Numerical Prediction of Cavitating Flows Over Various 2D Geometries Using Modification to the Turbulence Model

Author(s):  
Arvind Jayaprakash ◽  
Kartikeya Mahalatkar ◽  
Urmila Ghia ◽  
Karman Ghia

Cavitation often causes performance breakdown and damage. So, it is very essential to accurately predict and control this phenomenon. In the present study, the unsteady effects associated with cavitation are investigated for various geometries including a NACA 0015 hydrofoil, a convergent-divergent nozzle, and a wedge, using the flow solver FLUENT. The turbulent viscosity and/or the turbulence dissipation in the k-epsilon turbulence model are modified. The cavitation phenomenon is represented based on the full cavitation model developed by Singhal et al. (2002), and it considers the liquid-vapor mixture as a homogeneous fluid whose density varies with respect to the static pressure and whose mass fraction is known in advance. Also, this model takes into account the formation and collapse of the vapor bubbles. The k-epsilon model was originally developed for fully incompressible fluids, and does not account for highly compressible two-phase mixtures. Hence, it has been found to be unsatisfactory for predicting cavitating flow in presence of high compressibility in the vapor region. Coutier-Delgosha et al. (2001) attributed this to the over-prediction of eddy viscosity in regions of flow with high vapor concentration, and suggested a modification for the calculation of eddy viscosity. Though the modification works in capturing the dynamic behavior of the cavitation sheet, the accuracy of cavity length and frequency are not accurately predicted for high cavitation numbers. This is due to inability of Coutier-Delgosha’s turbulence modification to completely account for all the complex flow features present in the cavity closure region. Thus, a further modification based on geometry and cavitation type is introduced in the turbulence modification of Coutier-Delgosha. Better results were obtained for moderate cavitation numbers, but this modification failed to accurately predict the frequency of vapor-cloud shedding at high cavitation numbers. This discrepancy is attributed to the large (40000:1) variation of density in the liquid-vapor region. Hence, a new modification is suggested in the present work where the closure coefficients of dissipation production (C1epsilon) and dissipation (C2epsilon) in the turbulent dissipation equation are dynamically varied in the liquid-vapor region. A User-Defined Function (UDF) is implemented in FLUENT to achieve this dynamic variation of the above mentioned closure coefficients. This modification is being tested to predict the time-averaged cavity length and vapor-cloud shedding frequency of cavitating flow over a NACA 0015 airfoil. The poster will present comparisons of cavity length and vapor-cloud shedding frequency over a wide range of cavitation numbers as predicted by the present and previous turbulence modifications and those observed in experimental studies.

Author(s):  
Angelo Cervone ◽  
Cristina Bramanti ◽  
Emilio Rapposelli ◽  
Luca d’Agostino

The aim of the present paper is to provide some highlights about the most interesting experimental activities carried out during the years 2000–2004 through the CPRTF (Cavitating Pump Rotordynamic Test Facility) at Centrospazio/Alta S.p.A. After a brief description of the facility, the experimental activities carried out on a NACA 0015 hydrofoil for the characterization of the pressure coefficient on the suction side and evaluation the cavity length and oscillations are presented. Then, the results obtained to characterize the performance and the cavitation instabilities on three different axial inducers are showed: in particular, a commercial three-bladed inducer, the four-bladed inducer installed in the LOX turbopump of the Ariane Vulcain MK1 rocket engine and the “FAST2”, a two-bladed one manufactured by Avio S.p.A. using the criteria followed for the VINCI180 LOX inducer. The most interesting results are related to the effects of the temperature on the cavitation instabilities on hydrofoils and inducers. Experiments showed that some instabilities, like the cloud cavitation on hydrofoils and the surge on inducers, are strongly affected by the temperature, while others seem not to be influenced by the thermal effects. In the final part of this paper, some indications of the main experimental activities scheduled for the next future are provided.


2004 ◽  
Vol 126 (5) ◽  
pp. 844-850 ◽  
Author(s):  
Khaled S. Abdol-Hamid ◽  
S. Paul Pao ◽  
Steven J. Massey ◽  
Alaa Elmiligui

It is well known that the two-equation turbulence models under-predict mixing in the shear layer for high temperature jet flows. These turbulence models were developed and calibrated for room temperature, low Mach number, and plane mixing layer flows. In the present study, four existing modifications to the two-equation turbulence model are implemented in PAB3D and their effect is assessed for high temperature jet flows. In addition, a new temperature gradient correction to the eddy viscosity term is tested and calibrated. The new model was found to be in the best agreement with experimental data for subsonic and supersonic jet flows at both low and high temperatures.


Author(s):  
Xin Deng ◽  
Brian Weaver ◽  
Cori Watson ◽  
Michael Branagan ◽  
Houston Wood ◽  
...  

Oil-lubricated bearings are widely used in high speed rotating machines such as those used in the aerospace and automotive industries that often require this type of lubrication. However, environmental issues and risk-adverse operations have made water lubricated bearings increasingly popular. Due to different viscosity properties between oil and water, the low viscosity of water increases Reynolds numbers drastically and therefore makes water-lubricated bearings prone to turbulence effects. The turbulence model is affected by eddy-viscosity, while eddy-viscosity depends on wall shear stress. Therefore, effective wall shear stress modeling is necessary in producing an accurate turbulence model. Improving the accuracy and efficiency of methodologies of modeling eddy-viscosity in the turbulence model is important, especially considering the increasingly popular application of water-lubricated bearings and also the traditional oil-lubricated bearings in high speed machinery. This purpose of this paper is to study the sensitivity of using different methodologies of solving eddy-viscosity for turbulence modeling. Eddy-viscosity together with flow viscosity form the effective viscosity, which is the coefficient of the shear stress in the film. The turbulence model and Reynolds equation are bound together to solve when hydrodynamic analysis is performed, therefore improving the accuracy of the turbulence model is also vital to improving a bearing model’s ability to predict film pressure values, which will determine the velocity and velocity gradients in the film. The velocity gradients in the film are the other term determining the shear stress. In this paper, three approaches applying Reichardt’s formula were used to model eddy-viscosity in the fluid film. These methods are for determining where one wall’s effects begin and the other wall’s effects end. Trying to find a suitable model to capture the wall’s effects of these bearings, with aim to improve the accuracy of the turbulence model, would be of high value to the bearing industry. The results of this study could aid in improving future designs and models of both oil and water lubricated bearings.


2006 ◽  
Author(s):  
J. M. Jones ◽  
D. K. Walters

This paper presents the initial development and validation of a modified two-equation eddy-viscosity turbulence model for computational fluid dynamics (CFD) prediction of transitional and turbulent flow. The new model is based on a k-ω model framework, making it more easily implemented into existing general-purpose CFD solvers than other recently proposed model forms. The model incorporates inviscid and viscous damping functions for the eddy viscosity, as well as a production damping term, in order to reproduce the appropriate effects of laminar, transitional, and turbulent boundary layer flow. It has been implemented into a commercially available flow solver (FLUENT) and evaluated for simple attached and separated flow conditions, including 2-D flow over a flat plate and a circular cylinder. The results presented show that the new model is able to yield reasonable predictions of transitional flow behavior using a very simple modeling framework, including an appropriate response to freestream turbulence and boundary layer separation.


2020 ◽  
Author(s):  
Gokul Subbian ◽  
Ana Carolina Botelho e Souza ◽  
Rolf Radespiel ◽  
Elmar Zander ◽  
Noemi Friedman ◽  
...  

1996 ◽  
Vol 118 (2) ◽  
pp. 240-248 ◽  
Author(s):  
Y. T. Lee ◽  
C. Hah ◽  
J. Loellbach

Steady-state analyses of the incompressible flow past a single-stage stator/rotor propulsion pump are presented and compared to experimental data. The purpose of the current study is to validate a numerical method for the design application of a typical propulsion pump and for the acoustic analysis based on predicted flowfields. A steady multiple-blade-row approach is used to calculate the flowfields of the stator and the rotor. The numerical method is based on a fully conservative control-volume technique. The Reynolds-averaged Navier–Stokes equations are solved along with the standard two-equation k–ε turbulence model. Numerical results for both mean flow and acoustic properties compare well with measurements in the wake of each blade row. The rotor blade has a thick boundary layer in the last quarter of the chord and the flow separates near the trailing edge. These features invalidate many Euler prediction results. Due to the dramatic reduction of the turbulent eddy viscosity in the thick boundary layer, the standard k–ε model cannot predict the correct local flow characteristics near the rotor trailing edge and in its near wake. Thus, a modification of the turbulence length scale in the turbulence model is applied in the thick boundary layer in response to the reduction of the turbulent eddy viscosity.


2017 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Uriel Goldberg

This paper describes improvements in predictive quality to the original Wilcox k-ω turbulence model. A major disadvantage in the near-wall formulation of this model is usage of the large eddy inverse time-scale, ω ~ ε/k, even though small, dissipative eddies popular the immediate vicinity of walls. The present work suggests a correction to this problemthrough a realizable constraint introduced by the Kolmogorov time-scale. A second realizability constraint, the Schwarz condition, limits eddy viscosity magnitude in flow zones involving large normal strain gradients. Several examples demonstrate the improvements enabled due to these corrections, particularly in transonic and impinging flows where significant normal strain gradients occur.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012214
Author(s):  
A S Stabnikov ◽  
D K Kolmogorov ◽  
A V Garbaruk ◽  
F R Menter

Abstract Direct numerical simulation (DNS) of the separated flow in axisymmetric CS0 diffuser is conducted. The obtained results are in a good agreement with experimental data of Driver and substantially supplement them. Along with other data, eddy viscosity extracted from performed DNS could be used for RANS turbulence model improvement.


Sign in / Sign up

Export Citation Format

Share Document