CFD-Based Design Improvement for Single-Phase and Two-Phase Flows Inside an Electrical Submersible Pump

Author(s):  
Emanuel Marsis ◽  
Sahand Pirouzpanah ◽  
Gerald Morrison

Computational fluid dynamics (CFD) is widely used to simulate fluid flows in turbomachinery. A detailed CFD study was performed to enhance the design of an electrical submersible pump (ESP) manufactured by Baker Hughes. The pump has a special patented impeller design enabling it to handle up to 70% gas volume fraction (GVF). A CFD-based design study was performed on the ESP diffuser (for the first time) to improve the pump’s performance and reduce losses. The CFD model was initially validated using experimental results. Different designs were simulated to reach the optimum design. Many factors affect pump performance, including flow separation losses in the stator (such as the number of blades, the meridional profile of the pump and the shape of the stator blades). In addition, a non-uniform flow while exiting one stage affects the rotor performance of the next stage. Therefore, improving the diffuser design improves the current stage performance as well as the performance of the next rotor. In this study, improved designs show that optimizing the stator design can increase the static pressure of the pump by 4% for single-phase flow, and 23% for two-phase flow in the simulated cases.

2021 ◽  
Vol 16 ◽  
pp. 158-167
Author(s):  
Abdulqader Hasan ◽  
Mohamed S. Gadala ◽  
Salman Shahid ◽  
Mohd Shiraz Aris ◽  
Sharul Sham Dol ◽  
...  

The effects of the wall shear stress on an Electrical Submersible Pump (ESP) was investigated in this paper. A CFD model in ANSYS Fluent was proposed to simulate actual single-phase and two-phase flow. The bottom hole pressure was minimized by utilizing the artificial lift methods. The flowing fluids in pumps and pipes causes shear stress on surface interacting. In multiphase flow application pump damages on head degradation as well as shear stress affects. The K-ω turbulence model and the multiphase Mixture approach with the sliding technique used to solve the Navier-Stokes equation. To study the effects of gas-liquid (air-water) flow on the ESP and the pump handle ability, the rotation speeds were varied while the other parameters were kept constant. The rotation speeds simulated were at 500, 900, 1500, 2000 and 2500 rpm meanwhile the water flow rate and gas flow rate were kept constant with 20 L/min and 1% fraction, respectively. The results obtained show that as the rotation speeds were increased, the less concentration of the bubbles were observed, moreover the wall shear stress (WSS) increases. Although, the wall shear stress in both single-phase and two-phase flow were tend to increase as the blades length increased, however for the single-phase flow the WSS was found higher in all the simulated rotational speeds.


2021 ◽  
Vol 198 ◽  
pp. 108127
Author(s):  
William Monte Verde ◽  
Jorge Biazussi ◽  
Cristhian Estrada Porcel ◽  
Valdir Estevam ◽  
Alexandre Tavares ◽  
...  

2015 ◽  
Vol 137 (8) ◽  
Author(s):  
Sangho Sohn ◽  
Jaebum Park ◽  
Dong-Wook Oh

A simple use of Venturi might be used to measure two-phase flow rate within relatively low GVF(gas volume fraction). Upstream flow entering Venturi can be improved with installed flow homogenizer which is easily fabricated by 3-dimensional printer with multiple holes. Simultaneous measurement between high-speed flow visualization and dynamic differential pressure measurement was made to find visual criteria for two-phase flow rate measurement with different GVF ranged from 0% to 30%. It was observed that the two-phase flow rate can be reliably measured up to 15% of GVF using flow homogenizer. FFT(Fast-Fourier Transform) results proved that the long flow homogenizers (type 2 and 4) showed a lower amplitude of differential pressure (Δp) than the short flow homogenizers (type 1 and 3) respectively. So the optimized flow homogenizer can be useful to measure two-phase flow rate at low GVF.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Rinaldo Antonio de Melo Vieira ◽  
Mauricio Gargaglione Prado

The effect of free gas on electrical submersible pump (ESP) performance is well known. At a constant rotational speed and constant liquid flow rate, a small amount of gas causes a mild head reduction when compared to the single phase liquid head. However, at higher gas rates, a drastic reduction in the head is observed. This critical condition, known as the surging point, is a combination of liquid and gas flow rates that cause a maximum in the head performance curve. The first derivative of the head with respect to the liquid flow rate changes sign as the liquid flow rate crosses the surging point. In several works on ESP two-phase flow performance, production conditions to the left of the surging region are described or reported as unstable operational conditions. This paper reviews basic concepts on stability of dynamical systems and shows through simulation that ESP oscillatory behavior may result from two-phase flow conditions. A specific drift flux computation code was developed to simulate the dynamic behavior of ESP wells producing without packers.


Sign in / Sign up

Export Citation Format

Share Document