Numerical Modeling of Vertical Axis Wind Turbines

Author(s):  
Teresa Parra-Santos ◽  
Armando Gallegos-Muñoz ◽  
Miguel A. Rodriguez-Beneite ◽  
Cristobal Uzarraga-Rodriguez ◽  
Francisco Castro-Ruiz

This paper aims to predict the performance of Vertical Axis Wind Turbine (VAWT), hence the modeling of kinetic energy extraction from wind and its conversion to mechanical energy at the rotor axis, is carried out. The H-type Darrieus turbine consists of three straight blades with shape of aerofoil attached to a rotating vertical shaft. The criterion on the selection of this kind of turbines, despite its reduced efficiency, is the easy manufacture in workshops. A parametric study has been carried out to analyze the camber effect on the non dimensional curves of power coefficient so that the self starting features as well as the range of tip speed ratio of operation could be predicted.

Author(s):  
Jay P. Wilhelm ◽  
Emily D. Pertl ◽  
Franz A. Pertl ◽  
James E. Smith

Conventional straight bladed vertical axis wind turbines are typically designed to produce maximum power at tip speed ratio, but power production can suffer when operating outside of the design range. These turbines, unless designed specifically for low speed operation, may require rotational startup assistance. Circulation control methods, such as using blowing slots on the trailing edge could be applied to a Vertical Axis Wind Turbine (VAWT) blade. Improvements to the amount of power developed at lower speeds and elimination or reduction of startup assistance could be possible with this lift augmentation. Selection of a beneficial rotor solidity and control over when to utilize the blowing slots for the CC-VAWT (Circulation Controlled-Vertical Axis Wind Turbine) appears to have a profound impact on overall performance. Preliminary performance predictions indicate that at a greater range of rotor solidities, the CC-VAWT can have overall performance levels that exceed a conventional VAWT. This paper describes the performance predictions and solidity selection of a circulation controlled vertical axis wind turbine that can operate at higher overall capture efficiencies than a conventional VAWT.


2012 ◽  
Vol 189 ◽  
pp. 448-452
Author(s):  
Yan Jun Chen ◽  
Guo Qing Wu ◽  
Yang Cao ◽  
Dian Gui Huang ◽  
Qin Wang ◽  
...  

Numerical studies are conducted to research the performance of a kind of lift-drag type vertical axis wind turbine (VAWT) affected by solidity with the CFD method. Moving mesh technique is used to construct the model. The Spalart-Allmaras one equation turbulent model and the implicit coupled algorithm based on pressure are selected to solve the transient equations. In this research, how the tip speed ratio and the solidity of blade affect the power coefficient (Cp) of the small H-VAWT is analyzed. The results indicate that Cp curves exhibit approximate parabolic form with its maximum in the middle range of tip speed ratio. The two-blade wind turbine has the lowest Cp while the three-blade one is more powerful and the four-blade one brings the highest power. With the certain number of blades, there is a best chord length, and too long or too short chord length may reduce the Cp.


2012 ◽  
Vol 215-216 ◽  
pp. 1323-1326
Author(s):  
Ming Wei Xu ◽  
Jian Jun Qu ◽  
Han Zhang

A small vertical axis wind turbine with wind speed self-adapting was designed. The diameter and height of the turbine were both 0.7m. It featured that the blades were composed of movable and fixed blades, and the opening and closing of the movable blades realized the wind speed self-adapting. Aerodynamic performance of this new kind turbine was tested in a simple wind tunnel. Then the self-starting and power coefficient of the turbine were studied. The turbine with load could reliably self-start and operate stably even when the wind velocity was only 3.6 m/s. When the wind velocity was 8 m/s and the load torque was 0.1Nm, the movable blades no longer opened and the wind turbine realized the conversion from drag mode to lift mode. With the increase of wind speed, the maximum power coefficient of the turbine also improves gradually. Under 8 m/s wind speed, the maximum power coefficient of the turbine reaches to 12.26%. The experimental results showed that the new turbine not only improved the self-starting ability of the lift-style turbine, but also had a higher power coefficient in low tip speed ratio.


2018 ◽  
Vol 13 (1) ◽  
pp. 28
Author(s):  
Muhammad Ivan Fadhil Hendrawan ◽  
Dominicus Danardono ◽  
Syamsul Hadi

AbstractThe simulation aimed to understand the effect of the angle of blade number and blade number of vertical axis wind turbine with cross flow runner to enhance the performance of wind turbine. The turbine had 20, 22, and 24 number of blades. Simulation was done in 2D analysis using ANSYS-Fluent. Tip speed ratio was varied in range of 0,1-0,5 with constant velocity inlet 2 m/s. The effect of blade numbers to torque and power coefficient were analyzed and compared. It had been found that the best power coefficient were 0,5 at tip speed ratio 0,3.


2021 ◽  
Vol 16 (2) ◽  
pp. 218
Author(s):  
Fahrudin Fahrudin ◽  
Fitri Wahyuni ◽  
Dini Oktavitasari

<p>Wind is an alternative energy that is environmentally friendly and sustainable. Therefore, we need a type of wind turbine that can receive wind from all directions. The crossflow type vertical axis wind turbine has a high torque coefficient at a low tip speed ratio. The purpose of this study was to determine the effect of the number of blades on the performance of the vertical axis crossflow wind turbine. The experimental test was carried out by varying the number of blades. The configuration is analyzed using the experimental wind tunnel test scheme which has been modified in the section test section. The results showed that the number of blades 16 has a power coefficient ( ) = 0.23 tip speed ratio (TSR) = 0.42 at a wind speed of 4 m / s.</p><p><strong><br /></strong></p>


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3738 ◽  
Author(s):  
Lu Ma ◽  
Xiaodong Wang ◽  
Jian Zhu ◽  
Shun Kang

In this paper, a dynamic stall control scheme for vertical-axis wind turbine (VAWT) based on pulsed dielectric-barrier-discharge (DBD) plasma actuation is proposed using computational fluid dynamics (CFD). The trend of the wind turbine power coefficient with the tip speed ratio is verified, and the numerical simulation can describe the typical dynamic stall process of the H-type VAWT. The tangential force coefficient and vorticity contours of the blade are compared, and the regular pattern of the VAWT dynamic stall under different tip speed ratios is obtained. Based on the understanding the dynamic stall phenomenon in flow field, the effect of the azimuth of the plasma actuation on the VAWT power is studied. The results show that the azimuth interval of the dynamic stall is approximately 60° or 80° by the different tip speed ratio. The pulsed plasma actuation can suppress dynamic stall. The actuation is optimally applied for the azimuthal position of 60° to 120°.


2018 ◽  
Vol 14 (3) ◽  
pp. 141-148
Author(s):  
Abdullateef A. Jadallah ◽  
Sahar R. Farag ◽  
Jinan D. Hamdi

Developments are carried out to enhance the performance of vertical axis wind turbines (VAWT). This paper studies the performance of the ducted wind turbine with convergent duct (DAWT). Basically, the duct technique is utilized to provide the desired wind velocity facing the turbine. Methodology was developed to estimate the decisive performance parameter and to present the effect of the convergent duct with different inlet angles. The ducted wind turbine was analyzed and simulated using MATLAB software and numerically using ANSYS-Fluent 17.2. Result of both approaches were presented and showed good closeness for the two cases of covering angles 12  and 20 respectively. Results also showed that the convergent duct with an inlet angle 12   and 20  improved the coefficient of performance at a specified tip speed ratio by 25.8% and 33.33% respectively in the productivity of wind turbine.  


Author(s):  
Louis Angelo Danao ◽  
Jonathan Edwards ◽  
Okeoghene Eboibi ◽  
Robert Howell

Numerical simulations using RANS–based CFD have been utilised to carry out investigations on the effects of unsteady wind in the performance of a wind tunnel vertical axis wind turbine. Using a validated CFD model, unsteady wind simulations revealed a fundamental relationship between instantaneous VAWT CP and wind speed. CFD data shows a CP variation in unsteady wind that cuts across the steady CP curve as wind speed fluctuates. A reference case with mean wind speed of 7m/s, wind speed amplitude of ±12%, fluctuating frequency of 0.5Hz and mean tip speed ratio of 4.4 has shown a wind cycle mean power coefficient of 0.33 that equals the steady wind maximum. Increasing wind speed causes the instantaneous tip speed ratio to fall which leads to higher effective angle of attack and deeper stalling on the blades. Stalled flow and rapid changes in angle of attack of the blade induce hysteresis loops in both lift and drag. Decreasing wind speeds limit the perceived angle of attack seen by the blades to near static stall thus reducing the positive effect of dynamic stall on lift generation. Three mean tip speed ratio cases were tested to study the effects of varying conditions of VAWT operation on the overall performance. As the mean tip speed ratio increases, the peak performance also increases.


Author(s):  
Elhadji A. A. Bah ◽  
Lakshmi N. Sankar ◽  
Jechiel I. Jagoda

Vertical axis wind turbines (VAWT) have a relatively simple, rugged construction compared to HAWTs. However, vertical-axis wind turbines have numerous challenges that may hinder their performance. For instance they are strongly affected by dynamic stall at low tip speed ratios. A significant part of the kinetic energy contained in the oncoming wind is lost in swirl and vortices. As a result, VAWTs have a lower power production and efficiency compared to HAWTs. In an effort to alleviate the adverse effects of dynamic stall phenomena, the present study explores the use of two-element airfoils. A comparative study of single element and dual element VAWT configurations for representative VAWT turbines is given. The benefits of dual-element configurations are analyzed through a detailed flow visualization study of the single and two-element VAWT configurations at various azimuthal locations for a representative tip speed ratio. Analysis of these qualitative phenomena is complemented by a discussion on quantitative data for torque, surface pressure distributions, and airloads.


Author(s):  
Mojtaba Ahmadi-Baloutaki ◽  
Rupp Carriveau ◽  
David S-K. Ting

A design methodology has been presented on the sizing and material selection of straight-bladed vertical axis wind turbines. Several design parameters such as turbine power coefficient, blade tip speed ratio, rotor solidity factor, blade aspect ratio and rotor moment of inertia have been analyzed. Material selection and its relevant design criteria have also been discussed for different parts of a straight-bladed vertical axis wind turbines with three blades and two supporting arms per blade. The number of the supporting arms and their optimum locations have been determined via minimizing the bending moments on the blade. A comparative study has also been performed to examine the effect of blade density and turbine H/D ratio on the rotor moment of inertia. It was found that the turbine rotational speed increases as blade density decreases and this increase is larger at higher turbine H/D ratio.


Sign in / Sign up

Export Citation Format

Share Document