Improving the Efficiency of a Compact Inline Hydro-Mechanical Transmission (i-HMT) at Lock-Up

2021 ◽  
Author(s):  
Johnathan (Hans) Barkei ◽  
Perry Y. Li

Abstract A hydro-mechanical transmission (HMT) transmits power both mechanically and hydraulically allowing continuously variable transmission ratios and more efficient transmission than hydrostatic transmission. A conventional HMT tends to be costly and bulky since it has a hydrostatic transmission in parallel with a mechanical transmission. An alternative is a compact inline configuration that utilizes a two-shafted pump that is mechanically and hydraulically connected to a motor. This avoids the need for a planetary gear set while providing the HMT functionality. When the pump/motor displacement is zero, all of the power is transmitted mechanically and the transmission ratio is unity, a condition referred to as lock-up that is expected to be very efficient. Previous research however has shown significant losses at this operating condition in experiments. This is thought to be caused primarily by compressibility losses due to the repeated unnecessary opening and closing of the distributor valves. This paper first models the Hondamatic in simulations to confirm that compressibility losses contribute to the low efficiency at lock-up. Second, the paper proposes a solution to reduce these compressibility losses by means of a second cam mode that closes the distributor valves to prevent flow between the piston and the high and low pressure volumes. The performance of the existing inline HMT and the proposed solution at lock-up are modeled in simulations and compared. The results indicate a 10% increase in efficiency at lock-up.

Author(s):  
S M Savaresi ◽  
F Taroni ◽  
F Prevedi ◽  
S Bittanti

In this work, a power-split continuously variable transmission (CVT) used in high-power tractors is considered. Power-split CVTs are characterized by the combination of a traditional discontinuous mechanical transmission and a continuously variable transmission. This provides, at the same time, smooth variations of the transmission ratio and high efficiency of the overall transmission system. The CVT considered in this paper is a hydrostatic power-split unit conceived for top-power agricultural tractors. The goal of this paper is to present a case study on the design and tuning of the control system structure for this type of CVT. This structure consists of three main parts: a servo controller on the internal current of the valve of the hydraulic transmission; a servo controller on the hydraulic transmission ratio; a synchronizer which coordinates the hydraulic and the mechanical parts of the CVT. The design, tuning and testing of this set of automatic controllers is presented.


2017 ◽  
Vol 7 (3) ◽  
pp. 127
Author(s):  
Izhari Izmi Mazali ◽  
Kamarul Baharin Tawi ◽  
Bambang Supriyo ◽  
Nurulakmar Abu Husain ◽  
Mohd Salman Che Kob ◽  
...  

2014 ◽  
Vol 952 ◽  
pp. 249-252
Author(s):  
Wu Zhang ◽  
Wei Guo ◽  
Fa Rong Kou ◽  
Yi Zhi Yang

Pulley strain aggravated whole-Part abrasion, affected friction and lubricates state of metal belt continuously variable transmission. Pulley strain was analyzed by analytical method and finite element analysis. The results indicate that with the increase of transmission ratio, the driver pulley compressive strain is increases after reduces for a while, and the driven pulley increase. Compressive strain dense when radius is lesser and vice versa. Two methods results are basically the same, whereby demonstrating that the model is rational and that the analysis results are reliable.


2009 ◽  
Vol 628-629 ◽  
pp. 167-172
Author(s):  
L.Y. Xu ◽  
Zhi Li Zhou ◽  
M.Z. Zhang ◽  
Y. Niu

In this paper, to improve the transmission ratio discontinuity problem during the gear shift process in the multi-gear fixed step ratio transmission of the tractors, a hydro-mechanical continuously variable transmission (HMCVT) for tractors is developed, which is composed of a single planetary gear differential train, a hydraulic transmission system consisted of the variable displacement pump (PV) and the fixed displacement motor (MF) and a multi-gear fixed step ratio transmission. Its stepless-speed-regulating characteristic, smooth range shifting condition and transmission efficiency are analyzed. The analytical results show that the tractors assembled with HMCVT can gain wide speed range and high transmission efficiency. There are eight high efficiency pure mechanical gears in the whole speed range, which is benefit to improve power and economic capabilities of vehicles.


2020 ◽  
Author(s):  
Chao Li ◽  
Xiuquan Cao ◽  
Qing-tao Li

Abstract In the existing traction continuously variable transmission (CVT), half toroidal CVT (HT-CVT) is considered to have a better traction performance. However, the HT-CVT has the spin losses due to its structural limitations, which significantly influences the traction efficiency. In this paper, the kinematic qualities and contact models of a novel zero-spin rolling conical CVT (RC-CVT) are studied, and then the rollers and conical disks are compactly designed through the proposed design principles. Subsequently, the transmission efficiency is investigated by using a detailed numerical model and compared with HT-CVT. Based on these computational models and parameters, the practical spin ratio, spin momentum and traction efficiency of RC-CVT are calculated and compared with HT-CVT. The results show that the practical spin ratio and spin momentum of RC-CVT are much smaller than that of HT-CVT, and the efficiency on fixed transmission ratio is consequently higher than that of HT-CVT.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
X. Hu ◽  
C. Jing ◽  
P. Y. Li

Abstract A hydromechanical transmission (HMT) is a continuously variable transmission that transmits power both mechanically and hydraulically. A typical HMT consists of a pair of hydraulic pump/motors and a mechanical transmission in parallel, making it bulky and costly. The Hondamatic transmission is a compact alternative HMT design that uses an inline configuration such that the rotation of the piston barrels of the pump and motor is dual-used for mechanical transmission. This is achieved using a two-shafted pump that plays the role of a planetary gear (PG) and a distributor valve mechanism that replaces the valve plates. This paper provides the operating principle of this inline HMT (iHMT) and analyzes its performance through a combination of modeling and experimentation. Specifically, ideal and lossy average models are developed, and the performance of the Hondamatic is characterized experimentally. The lossy model, fitted with seven empirically determined parameters, is capable of predicting the mechanical and volumetric losses at different ratios and operating conditions. The dominant losses are found to be compressibility losses and no-load viscous friction losses, especially on the motor side. These losses are attributed to be the main causes for the unity transmission ratio to be less efficient than expected. The overall efficiency is between 74 and 86% at the conditions tested experimentally and is predicted to be over 70% under most operating conditions and transmission ratios. This analytical and experimental study is the first study in the open literature on this innovative compact inline HMT configuration.


2020 ◽  
Vol 12 (11) ◽  
pp. 168781402096832
Author(s):  
Xueliang Li ◽  
Lu Zhang ◽  
Shujun Yang ◽  
Nan Liu

In order to improve the shift quality of hydro-mechanical continuously variable transmission, the effect of tangent bulk modulus and different control methods on the shift quality were analyzed. Theoretical analysis and experimental study on the tangent bulk modulus of oil were carried out to obtain the effect law of air content on the tangent bulk modulus of oil. A four-cavity model of a closed hydraulic circuit was established based on a two-stage arithmetic type hydro-mechanical transmission. By means of simulation analysis and experimental study, the effect of the tangent bulk modulus of oil on the shift quality is studied. The lean control method of reasonably controlling displacement ratio and prolonging the reverse time of load torque is put forward. The results show that this method can reduce the fluctuations of the speed of the fixed displacement motor and the oil pressure of the original low-pressure side. This method can also improve the shift quality and provide reference for the study of the shift process of hydro-mechanical continuously variable transmission.


Sign in / Sign up

Export Citation Format

Share Document