Influence of Water Behavior in the Gas Diffusion Layer on the Performance of PEMFC

Author(s):  
Gu-Gon Park ◽  
Young-Jun Sohn ◽  
Sung-Dae Yim ◽  
Tae-Hyun Yang ◽  
Young-Gi Yoon ◽  
...  

The affect of water behavior on the performance of the polymer electrolyte membrane fuel cell (PEMFC) was investigated experimentally. To understand the water transportation phenomena systematically, the gas diffusion layers were divided into two parts: the gas diffusion medium (GDM) and the micro-layer (ML). In this work, different Teflon (PTFE) contents in the GDM were intensively investigated under various single cell operation conditions. Current-Voltage (I-V) performance curves of single cells were compared and analyzed with respect to water transportation in the GDM. Through the results of this work, the dominant driving forces of the water transportation in the gas diffusion layer were determined which aids in designing the gas diffusion layers.

Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 971 ◽  
Author(s):  
Yanqin Chen ◽  
Chao Jiang ◽  
Chongdu Cho

In this paper, a commercial gas diffusion layer is used, to quantitatively study the correlation between its compressive characteristics and its operating temperature. In polymer electrode membrane fuel cells, the gas diffusion layer plays a vital role in the membrane electrode assembly, over a wide range of operating temperatures. Therefore, understanding the thermo-mechanical performance of gas diffusion layers is crucial to design fuel cells. In this research, a series of compressive tests were conducted on a commercial gas diffusion layer, at three different temperatures. Additionally, a microscopical investigation was carried out with the help of a scanning electron microscope, to study the evolution and development of the microstructural damages in the gas diffusion layers which is caused by the thermo-mechanical load. From the obtained results, it could be concluded that the compressive stiffness of the commercial gas diffusion layer depends, to a great extent, on its operational temperature.


Author(s):  
Zhongying Shi ◽  
Xia Wang ◽  
Laila Guessous

The gas diffusion layer (GDL) plays an important role in maintaining suitable water management in a proton exchange membrane fuel cell. The properties of the gas diffusion layer, such as its porosity, permeability, wettability, and thickness, are affected by the shoulders of the bipolar plates due to the compression applied in the assembly process. Compression therefore influences the water management inside fuel cells. A two-phase fuel cell model was used to study the water management problem in a proton exchange membrane fuel cell with interdigitated flow channels. The effect of the compression on the fuel cell performance was numerically investigated for a variety of GDL parameters. This paper focuses on studying the water management of fuel cells under compression for various types of gas diffusion layers. First, the deformation of a gas diffusion layer due to compression applied from the shoulders of the bipolar plates was modeled as a plain-strain problem and was determined using finite element analysis (FEA). The porosity and the permeability of the gas diffusion layer were then recalculated based on the deformation results. Next, the deformed domain from the FEA model was coupled with a fuel cell model, and the effects of the compression during the assembly process on the water management and fuel cell performance were studied for gas diffusion layers with different thicknesses, porosities, and compressive moduli. It was found that the deformation of the GDL results in a low oxygen concentration at the reaction site. The saturation level of liquid water increases along the flow direction, and is higher when the compression effect is considered in the simulation.


2015 ◽  
Vol 2015 (0) ◽  
pp. _J0560101--_J0560101-
Author(s):  
Takeshi AZUMA ◽  
Kengo SUZUKI ◽  
Yutaka TABE ◽  
Takemi CHIKAHISA

Author(s):  
Yutaka Tabe ◽  
Takamichi Ochi ◽  
Kazushige Kikuta ◽  
Takemi Chikahisa ◽  
Hideki Shinohara

In a polymer electrolyte membrane fuel cell, the condensed water in the separator-channel prevents the supply of reactants to electrodes, which deteriorates the cell performance. The Lattice Boltzmann simulation has been conducted to understand the behavior of condensed water in the separator-channels. The scheme for the two-phase flow with large density difference was applied and the boundary condition for wettability at the corner inside the channel was examined. The present simulation demonstrates the effects of the cross-sectional shape, the wettability of channel and the volume of condensed water on the liquid water behavior. In the hydrophilic separator-channels, the liquid water spreads along the channel wall to form film and, in a specific condition, the water draws away from the gas diffusion layer, which suppresses the flooding. On the other hand, the liquid water forms sphere, covering larger area of the surface of gas diffusion layer in the hydrophobic separator-channels, but the drain performance of liquid water is superior.


2021 ◽  
Vol 136 (3) ◽  
pp. 843-862
Author(s):  
Dieter Froning ◽  
Uwe Reimer ◽  
Werner Lehnert

AbstractPolymer electrolyte fuel cells require gas diffusion layers that can efficiently distribute the feeding gases from the channel structure to the catalyst layer on both sides of the membrane. On the cathode side, these layers must also allow the transport of liquid product water in a counter flow direction from the catalyst layer to the air channels where it can be blown away by the air flow. In this study, two-phase transport in the fibrous structures of a gas diffusion layer was simulated using the lattice Boltzmann method. Liquid water transport is affected by the hydrophilic treatment of the fibers. Following the assumption that polytetrafluorethylene is preferably concentrated at the crossings of fibers, the impact of its spatial distribution is analyzed. Both homogeneous and inhomogeneous distribution is investigated. The concentration of polytetrafluorethylene in the upstream region is of advantage for the fast transport of liquid water through the gas diffusion layer. Special attention is given to the topmost fiber layer. Moreover, polytetrafluorethylene covering the fibers leads to large contact angles.


2019 ◽  
Vol 2019 (0) ◽  
pp. J03110P
Author(s):  
Satoki ARISAWA ◽  
Enes Muhammet CAN ◽  
Yutaka TABA ◽  
Takemi CHIKAHISA

RSC Advances ◽  
2018 ◽  
Vol 8 (40) ◽  
pp. 22506-22514 ◽  
Author(s):  
Hung-Fan Lee ◽  
Jing-Yue Chang ◽  
Yui Whei Chen-Yang

Gas diffusion layer (GDL) is an important component related to the efficiency of proton exchange membrane fuel cells (PEMFCs).


Sign in / Sign up

Export Citation Format

Share Document