Advances in the Research and Development of Fuel Cells in China

Author(s):  
Chong-Fang Ma ◽  
Hang Guo ◽  
Fang Ye ◽  
Jian Yu

As a clean, high efficiency power generation technology, fuel cell is a promising choice of next generation power device. Widely application of fuel cells will make a contribution to save fuels and reduce atmospheric pollution. In recent years, fuel cells science, technology and engineering have attracted great interest in China. There are more and more Chinese scientists and engineers embark upon fuel cell projects. The government also encourages academic institutions and companies to enter into this area. Research and development of fuel cells are growing rapidly in China. There are many chances and challenges in fuel cells’ research and development. The state of the art of research and development of fuel cells in China was overviewed in this paper. The types of fuel cells addressed in this paper included alkaline fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid oxide fuel cells, proton exchange membrane fuel cells and direct methanol fuel cells.

Author(s):  
Supramanian Srinivasan ◽  
Lakshmi Krishnan ◽  
Andrew B. Bocarsly ◽  
Kan-Lin Hsueh ◽  
Chiou-Chu Lai ◽  
...  

Investments of over $1 B have been made for Fuel Cell R&D over the past five decades, for space and terrestrial applications; the latter includes military, residential power and heating, transportation and remote and portable power. The types of fuel cells investigated for these applications are PEMFCs (proton exchange membrane fuel cells), AFCs (alkaline fuel cells), DMFCs (direct methanol fuel cells), PAFCs (phosphoric acid fuel cells), MCFCs (molten carbon fuel cells), SOFCs (solid oxide fuel cells). Cell structure, operating principles, and characteristics of each type of fuel cell is briefly compared. The performances of fuel cells vs. competing technologies are analyzed. The key issues are which of these energy conversion systems are technologically advanced and economically favorable and can meet the lifetime, reliability and safety requirements. This paper reviews fuel cells vs. competing technologies in each application category from a scientific and engineering point of view.


2009 ◽  
Vol 21 (5) ◽  
pp. 673-692 ◽  
Author(s):  
Cristina Iojoiu ◽  
Jean-Yves Sanchez

This paper is a review that is focused on ionomers based on aromatic polysulfone backbone and intended to be used in proton exchange membrane fuel cells or in direct methanol fuel cells. Emphasis is placed on the different chemical routes to prepare the ionomers. Special attention is given to the impact of the ionomer structure on the conductivity performance and on the dimensional stability of the membranes at high temperatures.


Author(s):  
S. Srinivasan ◽  
R. Dillon ◽  
L. Krishnan ◽  
A. S. Arico ◽  
V. Antonucci ◽  
...  

Proton Exchange Membrane Fuel Cells (PEMFC) and Direct Methanol Fuel Cells (DMFC) have been in the forefront of all fuel cell technologies for transportation and portable power applications. This is mainly because of the quantum/semi-quantum jumps in these technologies. However, there are several techno-economic challenges for these types of fuel cells to enter the energy sector. The cell structures and operating principles of PEMFC and DMFC are similar to each other. However, techno-economic challenges for PEMFCs are significantly different from those for DMFCs, due to their applications, associated competing technologies, global market, and manufacturing environment. Both types of fuel cell are close to entering the energy sector now, more than ever before. Significant reduction of PEMFCs capital cost and miniaturization of DMFCs are two critical issues. Intense research and development efforts are needed with respect to (i) finding better and less expensive electrocatalysts and proton conducting membranes (ii) optimization of structure and composition of membrane and electrode assemblies, (iii) automation of techniques to fabricate cell and stack components, and (iv) finding efficient and cost effective methods for thermal and water management.


2007 ◽  
Vol 539-543 ◽  
pp. 74-79 ◽  
Author(s):  
Dave Ghosh ◽  
Shao Hong Wu

National Research Council (NRC) as the premier research and development organization within the government of Canada has the mandate of providing vital scientific and technological services to research and industrial communities. The NRC Institute for Fuel Cell Innovation (IFCI) is leading NRC’s National Fuel Cell Program and is working closely with academic, government, and industrial organizations to support fuel cell cluster in Vancouver and across Canada and to fulfill the innovation needs of Canadian fuel cell companies. The key programs at IFCI include: Proton Exchange Membrane Fuel Cells (PEMFC), Solid Oxide Fuel Cells (SOFC), Hydrogen generation and infrastructure, and technology demonstration. NRC-IFCI’s impact on the fuel cell industry can be seen through the development and transfer of targeted and collaborative research projects addressing strategic and current technical gaps and providing infrastructure for research, development and demonstration. IFCI has been a catalyst in the coordination of industry’s responses to current commercialization barriers. This paper presents the latest research and development activities as well as demonstrations at NRC-IFCI.


Author(s):  
B. Banazwski ◽  
R. K. Shah

Batteries have not kept pace with the advancing technology that they power, but they are used in everything from cell phones, laptop computers, and toys to consumer electronics. Compared to the devices that they power, batteries are relatively heavy, expensive per unit power they produce, last a relatively short time and recharging them takes hours. The solution to this less than desired means of a power source is fuel cells. Three fuel cells, also referred to as air breathers, considered are proton exchange membrane fuel cell (PEMFC), direct methanol fuel cells (DMFC), and direct formic acid fuel cells (DFAFC). We will discuss these fuel cells for micro and portable applications within the power range of 0.5 to 20 W for potential replacement of batteries. The reason for developing such fuel cells is to harness the power stored in the high energy density fuels, which provides more power and longer run times for the same packaging volume as batteries. The advantages of each type of fuel cell over batteries, their unique characteristics, technical drawbacks, current and future consumer products, and commercial issues will be outlined in this paper. A growing mobile society and consumer demands will drive the development of fuel cell technology forward as batteries reach their limit.


Author(s):  
Hang Guo ◽  
Chong Fang Ma ◽  
Mao Hai Wang ◽  
Jian Yu ◽  
Xuan Liu ◽  
...  

Fuel cells are related to a number of scientific and engineering disciplines, which include electrochemistry, catalysis, membrane science and engineering, heat and mass transfer, thermodynamics and so on. Several thermophysical phenomena such as heat transfer, multicomponent transport and two phase flow play significant roles in hydrogen proton exchange membrane fuel cells and direct methanol fuel cells based on solid polymer electrolyte membrane. Some coupled thermophysical issues are bottleneck in process of scale-up of direct methanol fuel cells and hydrogen proton exchange membrane fuel cells. In present paper, experimental results of visualization of condensed water in fuel cell cathode microchannels are presented. The equivalent diameter of the rectangular channel is 0.8mm. Water droplets from the order of 0.08mm to 0.8mm were observed from several different locations in the channels. Several important problems, such as generation and change characteristics of water droplet and gas bubble, two phase flow under chemical reaction conditions, mass transfer enhancement of oxygen in the cathode porous media layer, heat transfer enhancement and high efficiency cooling system of proton exchange membrane fuel cells stack, etc., are discussed.


2012 ◽  
Vol 512-515 ◽  
pp. 1442-1445
Author(s):  
Hai Dan Lin ◽  
He Zhang ◽  
Xiao Ying Yang

This review summarizes efforts in developing proton exchange membranes (PEMs) with excellent electrochemical fuel cell performance prepared by SPAEK in proton exchange membrane fuel cell (PEMFC) applications. Over the past few decades, much polyelectrolyte has been extensively studied to improve the properties as alternatives with lower cost and considerable performances for PEMFC. Sulfonated poly(aryl ether ketone) (SPAEK), fell into this category, which offers the attribute of adjustable proton conductivity, excellent mechanical and thermal stability. The discussion will cover crosslinking, organic-inorganic nanocomposite, layer-by-layer approaches.


Sign in / Sign up

Export Citation Format

Share Document