Reliability Analysis of the Cracked Ag-SU8 Interface on the Channel Wall in a Micro-PEMFC

Author(s):  
Chi-Hui Chien ◽  
Yi-San Shih ◽  
Shou-Shing Hsieh ◽  
Huang-Hsiu Tsai ◽  
Chih-Wei Lin ◽  
...  

The efficiency of the fuel cell depends on both the kinetics of the electrochemical process and performance of the components. The main aim of this research is to analysis the reliability of the cracked Ag-SU8 interface on the channel wall in a micro-PEMFC. An existed surface crack on the channel wall subjected to the flow induced compressive stresses and shear stresses will propagate and lead to the spall formation. In this paper, at first, the flow induced compressive and shear stresses are obtained through simulation of stress state and flow-field in the micro-channel by commercial package software ANSYS® 8.0. Then, the stresses arising at the crack tip due to flow induced compressive and shear stresses can be calculated and characterized by the mode I and II stress intensity factors (SIF), KI and KII, respectively. Finally, the KI and KII stress intensity factors at the crack tip are computed for the different crack sizes and loadings. The results show that the inlet pressure and crack length affect the stress intensity factors more than the inlet velocity does. Also, the results show that as the crack length increases, the value of KI will increase, but the value of KII decreases slightly.

Author(s):  
Daniel J Riddoch ◽  
Nils Cwiekala ◽  
David A Hills

We describe a method for calculating the crack tip stress intensity factors for the problem of one or two cracks at the apex of an arbitrary angle wedge. The kernels for a dislocation in an arbitrary angle wedge described in part 1 of this paper are used extensively. Consideration is given to variations of crack length, crack angle and wedge angle.


1979 ◽  
Vol 14 (1) ◽  
pp. 1-6 ◽  
Author(s):  
D P Rooke ◽  
D A Jones

Solutions are derived for mode I and mode II stress intensity factors for a crack at the edge of a sheet subjected to localized fretting forces. Both normal and tangential forces are considered. These solutions are approximated by a polynomial function of crack length, which is then used as a Green's function to derive stress intensity factors for arbitrary distributions of tensile and shear stresses at the edge of the sheet.


1977 ◽  
Vol 99 (3) ◽  
pp. 477-484 ◽  
Author(s):  
J. M. Bloom ◽  
W. A. Van Der Sluys

This paper evaluates eight different analytical procedures used in determining elastic stress intensity factors for gradient or nonlinear stress fields. From a fracture viewpoint, the main interest in this problem comes from the nuclear industry where the safety of the nuclear system is of concern. A fracture mechanics analysis is then required to demonstrate the vessel integrity under these postulated accident conditions. The geometry chosen for his study is that of a 10-in. thick flawed plate with nonuniform stress distribution through the thickness. Two loading conditions are evaluated, both nonlinear and both defined by polynomials. The assumed cracks are infinitely long surface defects. Eight methods are used to find the stress intensity factor: 1–maximum stress, 2–linear envelope, 3–linearization over the crack length from ASME Code, Section XI, 4–equivalent linear moment from ASME Code, Section III, Appendix G for thermal loadings, 5–integration method from WRC 175, Appendix 4 for thermal loadings, 6–8-node singularity (quarter-point) isoparametric element in conjunction with the displacement method, 7–polynomial method, and 8–semi-infinite edge crack linear distribution over crack. Comparisons are made between all eight procedures with the finding that the methods can be ranked in order of decreasing conservatism and ease of application as follows: 1–maximum stress, 2–linear envelope, 3–linearization over the crack length, 4–polynomial method, and 5–singularity element method. Good agreement is found between the last three of these methods. The remaining three methods produce nonconservative results.


1990 ◽  
Vol 57 (1) ◽  
pp. 117-127 ◽  
Author(s):  
Chien-Ching Ma

The dynamic stress intensity factors of an initially stationary semi-infinite crack in an unbounded linear elastic solid which kinks at some time tf after the arrival of a stress wave is obtained as a function of kinking crack tip velocity v, kinking angle δ, incident stress wave angle α, time t, and the delay time tf. A perturbation method, using the kinking angle δ as the perturbation parameter, is used. The method relies on solving simple problems which can be used with linear superposition to solve the problem of a kinked crack. The solutions can be compared with numerical results and other approximate results for the case of tf = 0 and give excellent agreement for a large range of kinking angles. The elastodynamic stress intensity factors of the kinking crack tip are used to compute the corresponding fluxes of energy into the propagating crack-tip, and these results are discussed in terms of an assumed fracture criterion.


1975 ◽  
Vol 97 (1) ◽  
pp. 45-51 ◽  
Author(s):  
M. Jolles ◽  
J. J. McGowan ◽  
C. W. Smith

A technique consisting of stress-freezing photoelasticity coupled with a Taylor Series Expansion of the maximum local in-plane shearing stress known as the Taylor Series Correction Method (TSCM) is applied to the determination of stress intensity factors (SIF’s) in flat bottomed surface flaws of flaw depth/length ratios of approximately 0.033. Flaw depth/thickness ratios of approximately 0.20 and 0.40 were studied as were plate width/crack length ratios of approximately 2.33 and 1.25, the former of which corresponded to a nearly infinite width. Agreement to well within 10 percent was found with the Rice-Levy and Newman theories using a depth-modified secant correction and equivalent flaw depth/length ratios. The Shah-Kobayashi Theory, when compared on the same basis, was lower than the experimental results. Using a modified net section stress correction suggested by Shah, agreement with the Shah-Kobayashi Theory was greatly improved but agreement with the other theories was poorer. On the basis of the experiments alone, it was found that the SIF was intensified by about 10 percent by decreasing the plate width/crack length from 2.33 to 1.25.


2019 ◽  
Vol 9 (17) ◽  
pp. 3581 ◽  
Author(s):  
Jin-Rae Cho

This paper presents the numerical prediction of stress intensity factors (SIFs) of 2-D inhomogeneous functionally graded materials (FGMs) by an enriched Petrov-Galerkin natural element method (PG-NEM). The overall trial displacement field was approximated in terms of Laplace interpolation functions, and the crack tip one was enhanced by the crack-tip singular displacement field. The overall stress and strain distributions, which were obtained by PG-NEM, were smoothened and improved by the stress recovery. The modified interaction integral M ˜ ( 1 , 2 ) was employed to evaluate the stress intensity factors of FGMs with spatially varying elastic moduli. The proposed method was validated through the representative numerical examples and the effectiveness was justified by comparing the numerical results with the reference solutions.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhensheng Yang ◽  
Fulin Li ◽  
Tianran Ma

In order to conserve the water resource during underground mining, the fracture and mechanical properties of rock are important for the stability of water-resisting layers, especially for the fracture behavior of boundary cracks containing water in rock. Considering the swelling of rock under water environment and the influence of water on rock, the stress intensity factors of modes I and II are derived for boundary cracks in rock under compressive and shear stresses. The cracks are divided into the closed and open states. The effects of the crack inclination angle, friction coefficient between crack surfaces, and initial crack length on stress intensity factors are also taken into account. The stress intensity factors for closed and open boundary cracks are verified by numerical and physical experiments, respectively, and the deviation of the results is within 5%. It is shown that pore pressure has different effects on the relationship between stress intensity factor and friction coefficient under different lateral pressures. The effect of water on crack propagation is mainly due to the deterioration of the fracture toughness of the rock. It is found that the critical coefficient λc is a key parameter to determine whether the boundary crack propagates in rock under compression-shear stress. Further studies should be performed to apply the present fracture theory to rock mass or water-resisting layers.


Author(s):  
A G Philipps ◽  
S Karuppanan ◽  
N Banerjee ◽  
D A Hills

Crack tip stress intensity factors are found for the problem of a short crack adjacent to the apex of a notch, and lying perpendicular to one of the notch faces. Loading is represented by the two Williams eigensolutions, the ratio between which provides a reference length scale and permits a comprehensive display of the solution. The results are applied to the problem of a crack starting from the edge of a notionally adhered complete contact, and conditions for the avoidance of crack development are found.


Sign in / Sign up

Export Citation Format

Share Document