Parameter Study of Steam Methanol Reforming With Cu/ZnO/Al2O3 Catalyst in a Microchannel Reactor

Author(s):  
Chun-I Lee ◽  
Huan-Ruei Shiu ◽  
Wen-Chen Chang ◽  
Fang-Hei Tsau

Three-dimensional numerical simulations were performed to investigate the effect of methanol conversion and hydrogen product of a microchannel methanol steam reformer under various parameter conditions. In this simulation, the wall temperature of reactor (Tw), inlet flow rate of reactant, the different S/C ratios (steam to carbon ratio) and the thickness of the catalyst layer were taken into account to analyze product concentration and conversion rates along the channel length. The methanol conversion for methanol steam reforming on Cu/ZnO/Al2O3 catalyst was carried out at reaction temperature ranging from 200 to 260° under an atmospheric pressure. Furthermore, the reaction schemes considered the methanol steam reforming reaction and the reverse water gas-shift reaction. Regarding the distribution analysis of methanol reforming, the methanol conversion (η) and the product of hydrogen increase with the increase in wall temperature from 200 to 260°C and lower reactant flow rates. However, the result shows the methanol conversion increases and the hydrogen product decreases with less feed-in amount of methanol as the higher S/C. Additionally, the methanol conversion increase with higher thickness of catalyst layer from 10 to 70μm. The product of hydrogen, therefore, reaches a consistent distribution above 40μm along the channel length. Nevertheless, all of the operation parameter of exhaust stream at the reformer exit has the following composition: 75% H2, 24% CO2 and less than 1% CO. This research attempts to reveal a simplified methanol reforming model, which analyze the significant behavior and product distribution in qualitative/quantitative along the channel.

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4862
Author(s):  
Ngoc Van Trinh ◽  
Younghyeon Kim ◽  
Hongjip Kim ◽  
Sangseok Yu

In a methanol-reforming system, because the mixture of methanol and water must be evaporated before reaching the reforming reaction zone, having an appropriate evaporator design is a fundamental requirement for completing the reforming reaction. This study investigates the effect of the evaporator design for the stable reforming of methanol–water mixtures. Four types of evaporator are compared at the same heat duty of the methanol-reforming system. The four evaporators are planar heat exchangers containing a microchannel structure, cylindrical shell-and-tube evaporators, zirconia balls for internal evaporation, and combinations of cylindrical shell-tubes and zirconia balls. The results show that the evaporator configuration is critical in performing stable reform reactions, especially for the flow-field mode of the evaporator. Additionally, the combination of both internal and external evaporation methods generates the highest performance for the methanol-reforming system, with the methanol conversion reaching almost 98%.


2020 ◽  
Vol 268 ◽  
pp. 115043 ◽  
Author(s):  
Peijian Yan ◽  
Pengfei Tian ◽  
Cheng Cai ◽  
Shenghu Zhou ◽  
Xinhai Yu ◽  
...  

2008 ◽  
Author(s):  
Yen-Cho Chen ◽  
Rei-Yu Chein ◽  
Li-Chun Chen

The methanol steam reforming plays an important role for hydrogen supply to the proton membrane exchange fuel cell in the portable power applications. The catalyst coating on the walls of channels is often used in the fabrication of the reactors in the reformer to minimize the pressure loss. In this study, the temperature and concentration fields in the reactors for the methanol steam reforming were investigated numerically. The methanol conversion is usually used to evaluate the performance of the reformer. The effects of the inlet gas temperature in the heat supply channel and inlet velocity in the reforming channel on the performance of the methanol steam reforming are presented.


2006 ◽  
Vol 119 (2-3) ◽  
pp. 93-98 ◽  
Author(s):  
Weiqiang Cao ◽  
Guangwen Chen ◽  
Shulian Li ◽  
Quan Yuan

2011 ◽  
Vol 102 (3-4) ◽  
pp. 387-394 ◽  
Author(s):  
Maria Turco ◽  
Giovanni Bagnasco ◽  
Claudia Cammarano ◽  
Luca Micoli ◽  
Maurizio Lenarda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document