scholarly journals Dynamic Modeling of a Solid Oxide Fuel Cell Combined Heat and Power System With Thermal Storage for Commercial Building Applications

Author(s):  
Kimihiro Nanaeda ◽  
Fabian Mueller ◽  
Jacob Brouwer ◽  
Scott Samuelsen

A dynamic model of an integrated solid oxide fuel cell (SOFC) combined heat and power (CHP) system has been developed. The model was developed by modifying a previously developed generic 5 kW simple-cycle SOFC system. Fuel cell model modifications include changes in methods and constants for estimating over-potentials to better simulate a modern anode-supported planar SOFC. In addition to scaling up and modifying the fuel cell model, a thermal energy storage (TES) tank, exhaust gas duct burner and hot water exhaust gas recuperator model were integrated into the system model. The fully integrated system model can effectively simulate an SOFC-CHP system and evaluate the system performance and efficiency in meeting building electricity and heating demand profiles. For the present effort, dynamic building electricity and heating data from a hotel operated in Orange County, southern California during the months of July and August 2008 were analyzed. Specifically, tradeoffs between SOFC performance and thermal energy storage have been investigated. The simulation results show that the SOFC-CHP system has the ability to follow the dynamic electrical load with appropriate system design and controls. Due to thermal power mismatch during electricity load-following operation, supplementary exhaust gas duct burner heat and/or a TES is required to independently dispatch the fuel cell power and meet the hotel heating demand. However, if the fuel cell is sufficiently sized, the system can achieve greater than 70% efficiency with only a small TES tank and without the need to fire the duct burner. The dynamic model and integrated SOFC-TES concept are shown to be useful for developing integrated CHP systems and to evaluate performance.

Author(s):  
Robert J. Braun

A techno-economic optimization study investigating optimal design and operating strategies of solid oxide fuel cell (SOFC) micro-combined heat and power (CHP) systems for application in U.S. residential dwellings is carried out through modeling and simulation of various anode-supported planar SOFC-based system configurations. Five different SOFC system designs operating from either methane or hydrogen fuels are evaluated in terms of their energetic and economic performances and their overall suitability for meeting residential thermal-to-electric ratios. Life-cycle cost models are developed and employed to generate optimization objective functions, which are utilized to explore the sensitivity of the life-cycle costs to various system designs and economic parameters and to select optimal system configurations and operating parameters for eventual application in single-family, detached residential homes in the U.S. The study compares the results against a baseline SOFC-CHP system that employs primarily external steam reforming of methane. The results of the study indicate that system configurations and operating parameter selections that enable minimum life-cycle cost while achieving maximum CHP-system efficiency are possible. Life-cycle cost reductions of over 30% and CHP efficiency improvements of nearly 20% from the baseline system are detailed.


2013 ◽  
Vol 336-338 ◽  
pp. 695-699 ◽  
Author(s):  
Ying Wei Kang ◽  
Wei Huang ◽  
Yang Xue ◽  
Guang Yi Cao ◽  
Heng Yong Tu

In the past decade, developing solid oxide fuel cell (SOFC) systems for micro combined heat and power applications (micro-CHP, 1-10 kWe) is one of the hot spots in the world energy field. To meet the requirements for system optimization and control design of SOFC micro-CHP systems, in this paper a dynamic model of an SOFC micro-CHP system is developed, based on which dynamic simulations are also carried out. Simulation results show that the present model can reflect the behavior of the SOFC micro-CHP system quite well; the influence of one component on another is an important factor to determine system dynamic behavior; as the system comprises many components and concerns different physical and chemical processes, it has dynamic processes with several kinds of time scales; for the air preheating need, the heat-exchange area of air pre-heater is quite big, which leads to its big thermal inertia, and causes the dynamic process lasting for several ten thousands of seconds.


2012 ◽  
Vol 622-623 ◽  
pp. 1162-1167
Author(s):  
Han Fei Tuo

In this study, energetic based fluid selection for a solid oxide fuel cell-organic rankine combined power system is investigated. 9 dry organic fluids with varied critical temperatures are chosen and their corresponding ORC cycle performances are evaluated at different turbine inlet temperatures and exhaust gas temperature (waste heat source) from the upper cycle. It is found that actual ORC cycle efficiency for each fluid strongly depends on the waste heat recovery performance of the heat recovery vapor generator. Exhaust gas temperature determines the optimal fluid which yields the highest efficiency.


Sign in / Sign up

Export Citation Format

Share Document