Flow Visualisation of a Converging Slot-Hole Film-Cooling Geometry

Author(s):  
J. E. Sargison ◽  
S. M. Guo ◽  
M. L. G. Oldfield ◽  
G. D. Lock ◽  
A. J. Rawlinson

This paper presents the first flow visualisation for the previously published novel film cooling hole, the converging slot-hole or console. Published experimental results [4,5] have demonstrated that the console improved both the heat transfer and aerodynamic performance of turbine vane and rotor blade cooling systems. Flow visualisation data for a row of consoles was compared with that of cylindrical and fan-shaped holes and a slot at the same inclination angle of 35° to the surface, on a large-scale, flat-plate model at engine representative Reynolds numbers in a low speed tunnel with ambient temperature mainstream flow. The data were collected using a fine nylon mesh covered with thermochromic liquid crystals, which allowed measurement of gas temperature in planes perpendicular to the flow. The data demonstrated that the console film was similar to a slot film, and remained thin and attached to the surface for coolant to mainstream momentum flux ratios of 1.1 to 40 and for a case with no crossflow (infinite momentum flux ratio).

2004 ◽  
Vol 108 (1086) ◽  
pp. 403-409 ◽  
Author(s):  
C. A. Coat ◽  
G. D. Lock

Abstract Flow visualisation experiments related to turbine film cooling have been conducted. These investigated the fluid mechanics of coolant ejection using a large-scale, flat-plate model at engine-representative Reynolds numbers in a low-speed tunnel with ambient-temperature mainstream flow. The coolant trajectories were captured using a fine nylon mesh covered with thermochromic liquid crystals, allowing measurement of gas temperature contours in planes perpendicular to the flow. Three injection geometries were assessed: cylindrical holes with stream-wise injection, cylindrical holes with cross-stream injection, and fan-shaped holes. The data demonstrated that the cylindrical holes produced discrete jets, which lifted off the surface at high coolant-to-mainstream momentum flux ratios; these jets were characterised by the kidney-shaped stream-tubes expected for injection into cross-flow. The jets injected with cross-stream momentum exhibited a more obvious kidney-shaped cross-section, which rotated with distance downstream of injection. The jets from the fan-shaped holes were attached to the surface even at high momentum flux ratios, were more diffuse, and exhibited two cores of high temperature. The trajectory visualisation data were used to interpret the adiabatic cooling effectiveness measured at the surface.


Author(s):  
Spencer J. Sperling ◽  
Randall M. Mathison

Abstract Gas turbine film cooling creates complicated and highly unsteady flow structures. This study seeks to examine the unsteady characteristics created by different film hole inlet geometries using a fast-response pressure sensitive paint (PSP) technique able to capture time-accurate measurements at 2000 frames per second, resolving frequencies up to 1000 Hz. Time accurate and time-averaged measurements are used to evaluate the performance of a plenum-style inlet and a crossflow-style inlet in varying turbulence environments over a flat plate. The results of this study are intended to begin the process of breaking down widely accepted time-averaged film effectiveness contours into the cumulative effects of smaller oscillating cooling jets. Jet behaviors observed in this study include a sweeping oscillation, unsteady attachment and separation from the plate, and time accurate and time average flow bias. The behavior and performance of higher blowing ratio, separated film cooling jets depend heavily on the momentum flux ratio. Crossflow fed cooling holes show bias to the upstream side of the cooling hole with respect to the internal crossflow direction. Plenum fed cooling holes outperform crossflow fed cooling holes, and the difference increases with increasing momentum flux ratio. Cooling hole inlet geometry and momentum flux ratio affect the core of the jet, and freestream turbulence affects the periphery of the jet. Fluctuating frequencies of plenum fed and crossflow fed cooling holes were seen to be influenced by the turbulent velocity fluctuation frequency. The resulting mode shapes showed dominant side-to-side fluctuations for higher turbulence environments and a separation and reattachment motion for lower turbulence environments.


Author(s):  
David R. H. Gillespie ◽  
Aaron R. Byerley ◽  
Peter T. Ireland ◽  
Zuolan Wang ◽  
Terry V. Jones ◽  
...  

The local heal transfer inside the entrance to large scale models of film cooling holes has been measured using the transient heat transfer technique. The method employs temperature sensitive liquid crystals to measure the surface temperature of large scale perspex models. Full distributions of local Nusselt number were calculated based on the cooling passage centreline gas temperature ahead of the cooling hole. The circumferentially averaged Nusselt number was also calculated based on the local mixed bulk driving gas temperature to aid interpretation of the results, and to broaden the potential application of the data. Data are presented for a single film cooling hole inclined at 90 and 150 degrees to the coolant duct wall. Both holes exhibited entry length heat transfer levels which were significantly lower than those predicted by entry length data in the presence of crossflow. The reasons for the comparative reduction are discussed in terms of the interpreted flow field.


Author(s):  
Spencer J. Sperling ◽  
Randall M. Mathison

Abstract Gas turbine film cooling creates complicated and highly unsteady flow structures. This study examines the unsteady characteristics created by different cooling hole inlet geometries using a fast-response pressure sensitive paint (PSP) technique able to capture time-accurate measurements at 2000 frames per second, resolving frequencies up to 1000 Hz. Time accurate and time-averaged measurements are used to evaluate the performance of a plenum-style inlet and a crossflow-style inlet in varying turbulence environments over a flat plate. Cooling hole inlet geometry and momentum flux ratio affect the core of the jet, and freestream turbulence affects the periphery of the jet. Crossflow fed cooling holes show bias to the upstream side of the cooling hole with respect to the internal crossflow direction. Plenum fed cooling holes outperform crossflow fed cooling holes, and the difference grows with increasing momentum flux ratio. The frequency of oscillation for both plenum and crossflow fed cooling holes are influenced by the freestream turbulent velocity fluctuations. The resulting mode shapes showed dominant side-to-side sweeping for higher turbulence environments and a separation and reattachment motion for lower turbulence environments. At higher momentum flux ratio, the jets were seen to increasingly favor separation and reattachment motion. The results of this study are intended to better inform existing predictive tools. With better understanding of the time- accurate behaviors responsible for creating the commonly accepted time-average coolant distributions, simple predictive tools may be better equipped to accurately model film cooling flows.


1996 ◽  
Vol 118 (2) ◽  
pp. 285-290 ◽  
Author(s):  
D. R. H. Gillespie ◽  
A. R. Byerley ◽  
P. T. Ireland ◽  
Z. Wang ◽  
T. V. Jones ◽  
...  

The local heat transfer inside the entrance to large-scale models of film cooling holes has been measured using the transient heat transfer technique. The method employs temperature-sensitive liquid crystals to measure the surface temperature of large-scale perspex models. Full distributions of local Nusselt number were calculated based on the cooling passage centerline gas temperature ahead of the cooling hole. The circumferentially averaged Nusselt number was also calculated based on the local mixed bulk driving gas temperature to aid interpretation of the results, and to broaden the potential application of the data. Data are presented for a single film cooling hole inclined at 90 and 150 deg to the coolant duct wall. Both holes exhibited entry length heat transfer levels that were significantly lower than those predicted by entry length data in the presence of crossflow. The reasons for the comparative reduction are discussed in terms of the interpreted flow field.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Artur Joao Carvalho Figueiredo ◽  
Robin Jones ◽  
Oliver J. Pountney ◽  
James A. Scobie ◽  
Gary D. Lock ◽  
...  

This paper presents volumetric velocimetry (VV) measurements for a jet in crossflow that is representative of film cooling. VV employs particle tracking to nonintrusively extract all three components of velocity in a three-dimensional volume. This is its first use in a film-cooling context. The primary research objective was to develop this novel measurement technique for turbomachinery applications, while collecting a high-quality data set that can improve the understanding of the flow structure of the cooling jet. A new facility was designed and manufactured for this study with emphasis on optical access and controlled boundary conditions. For a range of momentum flux ratios from 0.65 to 6.5, the measurements clearly show the penetration of the cooling jet into the freestream, the formation of kidney-shaped vortices, and entrainment of main flow into the jet. The results are compared to published studies using different experimental techniques, with good agreement. Further quantitative analysis of the location of the kidney vortices demonstrates their lift off from the wall and increasing lateral separation with increasing momentum flux ratio. The lateral divergence correlates very well with the self-induced velocity created by the wall–vortex interaction. Circulation measurements quantify the initial roll up and decay of the kidney vortices and show that the point of maximum circulation moves downstream with increasing momentum flux ratio. The potential for nonintrusive VV measurements in turbomachinery flow has been clearly demonstrated.


Author(s):  
Lingyu Zeng ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang

Most experiments of blade film cooling are conducted with density ratio lower than that of turbine conditions. In order to accurately model the performance of film cooling under a high density ratio, choosing an appropriate coolant to mainstream scaling parameter is necessary. The effect of density ratio on film cooling effectiveness on the surface of a gas turbine twisted blade is investigated from a numerical point of view. One row of film holes are arranged in the pressure side and two rows in the suction side. All the film holes are cylindrical holes with a pitch to diameter ratio P/d = 8.4. The inclined angle is 30°on the pressure side and 34° on the suction side. The steady solutions are obtained by solving Reynolds-Averaged-Navier-Stokes equations with a finite volume method. The SST turbulence model coupled with γ-θ transition model is applied for the present simulations. A film cooling experiment of a turbine vane was done to validate the turbulence model. Four different density ratios (DR) from 0.97 to 2.5 are studied. To independently vary the blowing ratio (M), momentum flux ratio (I) and velocity ratio (VR) of the coolant to the mainstream, seven conditions (M varying from 0.25 to 1.6 on the pressure side and from 0.25 to 1.4 on the suction side) are simulated for each density ratio. The results indicate that the adiabatic effectiveness increases with the increase of density ratio for a certain blowing ratio or a certain momentum flux ratio. Both on the pressure side and suction side, none of the three parameters listed above can serve as a scaling parameter independent of density ratio in the full range. The velocity ratio provides a relative better collapse of the adiabatic effectiveness than M and I for larger VRs. A new parameter describing the performance of film cooling is introduced. The new parameter is found to be scaled with VR for nearly the whole range.


Author(s):  
D. Chanteloup ◽  
A. Bo¨lcs

A study of flow in two stationary models of two-pass internal coolant passages is presented, which focuses on the heat transfer characteristics in the two-pass coolant channel. Heat transfer measurements were made with a transient technique using thermochromic liquid crystal technique to measure a surface temperature. The technique allows full surface heat transfer coefficient measurements on all the walls. The coolant passage model consisted of two square passages, each having a 20 hydraulic diameter length, separated by a rounded-tip web of 0.2 passage widths, and connected by a sharp 180 deg bend with a rectangular outer wall. Ribs were mounted on the bottom and top walls of both legs, with a staggered arrangement, and at 45 deg to the flow. The rib height and spacing were 0.1 and 1.0 passage heights, respectively. The measurements were obtained for Reynolds numbers of 25000, 50000 and 70000. One geometry is equipped with extraction holes to simulate holes for film cooling. Two series of holes are placed solely in the bottom wall, 4 holes are located in the bend, and 12 in the downstream leg. The global extraction through the holes was set to 30%, 40% and 50% of the inlet massflow. This paper presents new measurements of the heat transfer in the straight legs, and in the bend of the passage. It shows the influence of Reynolds number and extraction on full surface measurements and area averaged results.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Francesco Ornano ◽  
Thomas Povey

Abstract The desire to improve gas turbines has led to a significant body of research concerning film cooling optimization. The open literature contains many studies considering the impact on film cooling performance of both geometrical factors (hole shape, hole separation, hole inclination, row separation, etc.) and physical influences (effect of density ratio (DR), momentum flux ratio, etc.). Film cooling performance (typically film effectiveness, under either adiabatic or diabatic conditions) is almost universally presented as a function of one or more of three commonly used non-dimensional groups: blowing—or local mass flux—ratio, density ratio, and momentum flux ratio. Despite the abundance of papers in this field, there is some confusion in the literature about the best way of presenting such data. Indeed, the very existence of a discussion on this topic points to lack of clarity. In fact, the three non-dimensional groups in common use (blowing ratio (BR), density ratio, and momentum flux ratio) are not entirely independent of each other making aspects of this discussion rather meaningless, and there is at least one further independent group of significance that is rarely discussed in the literature (specific heat capacity flux ratio). The purpose of this paper is to bring clarity to this issue of correct scaling of film cooling data. We show that the film effectiveness is a function of 11 (additional) non-dimensional groups. Of these, seven can be regarded as boundary conditions for the main flow path and should be matched where complete similarity is required. The remaining four non-dimensional groups relate specifically to the introduction of film cooling. These can be cast in numerous ways, but we show that the following forms allow clear physical interpretation: the momentum flux ratio, the blowing ratio, the temperature ratio (TR), and the heat capacity flux ratio. Two of these parameters are in common use, a third is rarely discussed, and the fourth is not discussed in the literature. To understand the physical mechanisms that lead to each of these groups being independently important for scaling, we isolate the contribution of each to the overall thermal field with a parametric numerical study using 3D Reynolds-averaged Navier–Stokes (RANS) and large eddy simulations (LES). The results and physical interpretation are discussed.


Author(s):  
Wesly S. Anderson ◽  
Marc D. Polanka ◽  
Joseph Zelina ◽  
Dave S. Evans ◽  
Scott D. Stouffer ◽  
...  

Film cooling plays a critical role in providing effective thermal protection to components in modern gas turbine engines. A significant effort has been undertaken over the last 40 years to improve the distribution of coolant and to ensure that the airfoil is protected by this coolant from the hot gases in the freestream. This film, under conditions with high fuel-air ratios, may actually be detrimental to the underlying metal. The presence of unburned fuel from an upstream combustor may interact with this oxygen rich film coolant jet resulting in secondary combustion. The completion of the reactions can increase the gas temperature locally resulting in higher heat transfer to the airfoil directly along the path line of the film coolant jet. This secondary combustion could damage the turbine blade, resulting in costly repair, reduction in turbine life, or even engine failure. However, knowledge of film cooling in a reactive flow is very limited. The current study explores the interaction of cooling flow from typical cooling holes with the exhaust of a fuel-rich well-stirred reactor operating at high temperatures over a flat plate. Surface temperatures, heat flux, and heat transfer coefficients are calculated for a variety of reactor fuel-to-air ratios, cooling hole geometries, and blowing ratios. Emphasis is placed on the difference between a normal cylindrical hole, an inclined cylindrical hole, and a fan-shaped cooling hole. When both air and nitrogen are injected through the cooling holes, the changes in surface temperature can be directly correlated with the presence of the reaction. Photographs of the localized burning are presented to verify the extent and locations of the reaction.


Sign in / Sign up

Export Citation Format

Share Document