Microturbines and Trigeneration: Optimization Strategies and Multiple Engine Configuration Effects

Author(s):  
Stefano Campanari ◽  
Luca Boncompagni ◽  
Ennio Macchi

This paper investigates energy savings and economic aspects related to the use of microturbine generators in commercial buildings either for cogeneration (electricity+heat) or for trigeneration (electricity, heat and cold). In all calculations, reference is made to a 25 kWel–class commercial micro-turbine generator (MTG), tested by the authors. Various plant schemes are considered, based on one or several MTG sets. The possibility of generating heat and/or cold also by an electrically driven inverse-cycle air-to-water heat pump/chiller system is also considered. Calculations are based on the simulation code TRIGEN developed by the authors. The code provides detailed energy, economic and emission yearly balances. The plant operating mode is optimized in each time interval. The results indicate that, due to large load variations, (i) the optimum turbine nominal output is in the range of about 70% of the electric peak demand, (ii) energy savings are marginal, (iii) advantages related to splitting the overall capacity on more than one unit are marginal and (iv) the addition of an absorption machine improves the plant economics.

2004 ◽  
Vol 126 (1) ◽  
pp. 92-101 ◽  
Author(s):  
S. Campanari ◽  
L. Boncompagni ◽  
E. Macchi

This paper investigates energy savings and economic aspects related to the use of microturbine generators in commercial buildings either for cogeneration electricity+heat or for trigeneration (electricity, heat and cold). In all calculations, reference is made to a 25kWel-class commercial microturbine generator (MTG), tested by the authors. Various plant schemes are considered, based on one or several MTG sets. The possibility of generating heat and/or cold also by an electrically driven inverse-cycle air-to-water heat pump/chiller system is also considered. Calculations are based on the simulation code TRIGEN developed by the authors. The code provides detailed energy, economic and emission yearly balances. The plant operating mode is optimized in each time interval. The results indicate that, due to large load variations, (i) the optimum turbine nominal output is in the range of about 70% of the electric peak demand, (ii) energy savings are marginal, (iii) advantages related to splitting the overall capacity on more than one unit are marginal, and (iv) the addition of an absorption machine improves the plant economics.


2004 ◽  
Vol 126 (3) ◽  
pp. 581-589 ◽  
Author(s):  
Stefano Campanari ◽  
Ennio Macchi

The paper considers the use of gas fired micro turbine generators (MTG) for trigeneration (combined production of electricity, heating, and cooling) applications in tertiary buildings. The importance of the adopted MTG technology is investigated, showing that the high electrical efficiency levels achievable by future advanced ceramic MTGs would improve dramatically the economic competitiveness of the application, as well as the primary energy savings and environmental benefits. Calculations are performed by the simulation code TRIGEN, capable of optimizing the plant operating mode in each time step and integrating the results over the entire year. The requirement of a “target” energy saving index on the optimization procedure is also addressed.


Author(s):  
Stefano Campanari ◽  
Ennio Macchi

The paper considers the use of gas fired Micro Turbine Generators (MTG) for tri-generation (combined production of electricity, heating and cooling) applications in tertiary buildings. The importance of the adopted MTG technology is investigated, showing that the high electrical efficiency levels achievable by future advanced ceramic MTGs would improve dramatically the economic competitiveness of the application, as well as the primary energy savings and environmental benefits. Calculations are performed by the simulation code TRIGEN, capable of optimizing the plant operating mode in each time step and integrating the results over the entire year. The requirement of a “target” energy saving index on the optimization procedure is also addressed.


2012 ◽  
Vol 9 (2) ◽  
pp. 65
Author(s):  
Alhassan Salami Tijani ◽  
Nazri Mohammed ◽  
Werner Witt

Industrial heat pumps are heat-recovery systems that allow the temperature ofwaste-heat stream to be increased to a higher, more efficient temperature. Consequently, heat pumps can improve energy efficiency in industrial processes as well as energy savings when conventional passive-heat recovery is not possible. In this paper, possible ways of saving energy in the chemical industry are considered, the objective is to reduce the primary energy (such as coal) consumption of power plant. Particularly the thermodynamic analyses ofintegrating backpressure turbine ofa power plant with distillation units have been considered. Some practical examples such as conventional distillation unit and heat pump are used as a means of reducing primary energy consumption with tangible indications of energy savings. The heat pump distillation is operated via electrical power from the power plant. The exergy efficiency ofthe primary fuel is calculated for different operating range ofthe heat pump distillation. This is then compared with a conventional distillation unit that depends on saturated steam from a power plant as the source of energy. The results obtained show that heat pump distillation is an economic way to save energy if the temperaturedifference between the overhead and the bottom is small. Based on the result, the energy saved by the application of a heat pump distillation is improved compared to conventional distillation unit.


Author(s):  
Gianmario L. Arnulfi ◽  
Carlo Cravero ◽  
Martino Marini

Natural gas carrying from production sites to users’ facilities is made by marine shipping in liquid phase or by terrestrial pumping in gaseous phase through long pipelines. In the latter case several storage stations are distributed along the pipeline nets to move the natural gas from its deposits to users’ terminals. Storage stations are set up to compensate seasonal fluctuations of the consumer demand versus methane supply, storing the gas in various kinds of reservoirs. In most of such plants centrifugal compressors are used, where the energy and the time that a complete charge takes are affected by the operation scheduling of the compressor from the minimum to the maximum storage levels. While the pressure in the reservoir enforces the instant operation pressure, the flow rate is limited within a quite wide range. Here an in-house code, based on the lumped parameter approach and a quasi-steady dynamics, is applied to a complete charge. The natural gas behavior is modeled by the pseudo-ideal gas in order to get a fair accuracy keeping the usual gas dynamics equations. The compression path has been parameterized and a multi objective optimization, embedding the simulation code, has been implemented to find the most suitable management of the compression station for the minimization of time and energy. The most significant paths are analyzed to pick out the effects of the compression strategy.


Sign in / Sign up

Export Citation Format

Share Document