Film Cooling on a Modern HP Turbine Blade: Part II — Compound-Angle Round Holes

Author(s):  
D. Keith Walters ◽  
James H. Leylek ◽  
Frederick A. Buck

A well-tested computational methodology and a companion experimental study are used to analyze the physics of compound-angle, cylindrical-hole film cooling on the pressure and suction surfaces of a modern high-pressure turbine airfoil. A single-passage cascade (SPC) is used to model the blade passage flow experimentally and computationally. Realistic engine conditions, including transonic flow, high turbulence levels, and a nominal density ratio of 1.52, are used to examine blowing ratios of 1.0, 1.5, and 2.0 on the suction surface (SS) and 1.5, 3.0, and 4.5 on the pressure surface (PS). The predicted results agree with experimental trends, and differences are explained in terms of known deficiencies in the turbulence treatment. The mean-flow physics downstream of coolant injection are influenced primarily by a single dominant vortex that entrains coolant and mainstream fluid, and by the effect of convex (SS) or concave (PS) curvature on the coolant jet.

Author(s):  
E. Lee McGrath ◽  
James H. Leylek ◽  
Frederick A. Buck

The performance and physics of film cooling with compound-angle shaped holes on a modern high-pressure turbine airfoil is studied in detail using state-of-the-art computational simulations. Computations model high-speed single-airfoil-passage cascade experiments, and computational results show good agreement with experimental data. Evaluation of physics includes examination of flow features and adiabatic effectiveness. The blowing ratios (M) simulated on the pressure surface (PS) of the blade are 1.5, 3.0, and 4.5, with a single density ratio of 1.52. On the pressure surface the dominant mechanism affecting coolant behavior is vorticity, which increasingly tucks hot crossflow under the coolant as the blowing ratio increases. Thus at high blowing ratios, a lower percentage of the coolant provides thermal protection for the blade until the vortices dissipate far downstream. Also, the vortex structures cause large lateral temperature gradients despite the lateral motion of the flow induced by the compound-angle injection. The dominance of vorticity can be attributed to poor diffusion of the coolant inside the diffuser of the film hole. On the suction surface (SS), the simulated blowing ratios are 1.0, 1.5, and 2.0, with a single density ratio of 1.52. Pressure gradients normal to the SS result in the flow pushing the coolant onto the blade. Also, vorticity is less dominant since diffusion of coolant inside the film hole is better due to low blowing ratios and due to a hole metering section that is almost 3 times longer than that of the PS hole. Hot crossflow ingestion into the film hole is observed at M = 2.0. Ingested crossflow causes heating of the surface inside the hole that extends down to the end of the hole metering section, where the surface temperatures are approximately equal to an average of the crossflow and coolant temperatures. These results demonstrate the inadequacy of 1-D, empirical design tools and demonstrate the need for a validated CFD-based film cooling methodology.


Author(s):  
Forrest E. Ames

A four vane subsonic cascade was used to investigate the influence of turbulence on vane film cooling distributions. The influence of film injection on vane heat transfer distributions in the presence of high turbulence was examined in part I of this paper. Vane effectiveness distributions were documented in the presence of a low level of turbulence (1%) and were used to contrast results taken at a high level (12%) of large scale turbulence. All data were taken at a density ratio of about 1. The three geometries chosen to study included one row and two staggered rows of downstream film cooling on both the suction and pressure surfaces as well as a showerhead array. Turbulence was found to have a moderate influence on one and two rows of suction surface film cooling but had a dramatic influence on pressure surface film cooling, particularly at the lower velocity ratios. The strong pressure gradients on the pressure surface of the vane were also found to alter film cooling distributions substantially. At lower velocity ratios, effectiveness distributions for two staggered rows of holes could be predicted well using data from one row superposed. At higher velocity ratios the two staggered rows produced significantly higher levels of effectiveness than values estimated from single row data superposed. Turbulence was also found to substantially reduce effectiveness levels produced by showerhead film cooling.


Author(s):  
Frederick A. Buck ◽  
D. Keith Walters ◽  
Jeffrey D. Ferguson ◽  
E. Lee McGrath ◽  
James H. Leylek

State-of-the-art experimental and computational techniques are used to study film cooling on the suction and pressure surfaces of a modern turbine blade under realistic engine conditions. Measured data and predicted results are compared for coolant jets injected through a row of three fundamentally different configurations: (1) Compound-angle round (CAR) holes; (2) Axial shaped holes (ASH); and (3) Compound-angle shaped holes (CASH). Experiments employ a single-passage cascade for validation-quality adiabatic film effectiveness measurements using a gas analysis technique. Computations use a novel combination of geometry and grid generation techniques, discretization scheme, turbulence modeling, and numerical solvers to evaluate a “best practice” standard for use in the gas turbine industry. The gridding procedure uses a super-block, multi-topology, unstructured/adaptive, non-conformal, near-wall resolved mesh to accurately capture all of the mean flow features of the 3-D jet-in-crossflow interaction. The effects of blowing ratio (M) are examined, with M = 1.0, 1.5, and 2.0 on the suction surface and M = 1.5, 3.0, and 4.5 on the pressure surface. All simulations are run with a density ratio of 1.52. The simulations model the three-way coupling between a transonic blade passage flow, subsonic film-hole flow, and creeping plenum flow; high pressure gradients; high rates of curvature; and large strain-rates found in actual engines. Computed results are compared to experimental data in terms of aerodynamic loading and spanwise-averaged adiabatic effectiveness on the blade surfaces in order to validate the computational methodology for this class of problems and to explain the mechanisms responsible for the performance of CAR, ASH, and CASH configurations.


Author(s):  
Jeffrey D. Ferguson ◽  
James H. Leylek ◽  
Frederick A. Buck

A well-tested computational methodology and high-quality data from a companion experimental study are used to analyze the physics of axial-injected, shaped-hole film cooling on the pressure and suction surfaces of a modern high-pressure turbine blade. Realistic engine conditions, including transonic flow, high turbulence levels, and a nominal density ratio of 1.52, are used to examine blowing ratios of 1.0, 1.5, and 2.0 on the suction surface (SS) and 1.5, 3.0, and 4.5 on the pressure surface (PS). SS results show excellent film-cooling performance with the hole shaping, but massive hot crossflow ingestion is found using similar hole shaping on the PS. Primary mechanisms governing the near and far-field cooling effectiveness and crossflow ingestion are identified, including: (1) the nature of the coolant entry into the film hole; (2) location of hole shaping relative to major coolant flow characteristics; and (3) susceptibility of low-momentum fluid to pressure gradients. Changes in blowing ratio, while not introducing new physical mechanisms, significantly alter the extent to which the mechanisms already present affect the flow. These effects are highly non-linear for both SS and PS geometries, highlighting the inadequacy of one-dimensional design practices and the potential usefulness of CFD as a predictive tool.


Author(s):  
Zhan Wang ◽  
Jian-Jun Liu ◽  
Bai-tao An ◽  
Chao Zhang

The effects of axial row-spacing for double jet film-cooling (DJFC) with compound angle on the cooling characteristics under different blowing ratios were investigated numerically. First, the flow fields and cooling effectiveness of DJFC on flat plate with different axial row-spacing were calculated. Film-cooling with fan-shaped or cylindrical holes was also calculated for the comparison. The results indicate that a larger axial row-spacing is helpful to form the anti-kidney vortex and to improve the cooling effectiveness. The DJFC was then applied to the suction and pressure surface of a real turbine inlet guide vane. Comparisons of film-cooling effectiveness with the cylindrical and fan-shaped holes were also conducted. The results for the guide vane show that on the suction surface the DJFC with a larger axial row-spacing leads to better film coverage and better film-cooling effectiveness than the cylindrical or fan-shaped holes. On the pressure surface, however, the film-cooling with fan-shaped holes is superior to the others.


Author(s):  
Sridharan Ramesh ◽  
Christopher LeBlanc ◽  
Diganta Narzary ◽  
Srinath Ekkad ◽  
Mary Anne Alvin

Film cooling performance of the antivortex (AV) hole has been well documented for a flat plate. The goal of this study is to evaluate the same over an airfoil at three different locations: leading edge suction and pressure surface and midchord suction surface. The airfoil is a scaled up first stage vane from GE E3 engine and is mounted on a low-speed linear cascade wind tunnel. Steady-state infrared (IR) technique was employed to measure the adiabatic film cooling effectiveness. The study has been divided into two parts: the initial part focuses on the performance of the antivortex tripod hole compared to the cylindrical (CY) hole on the leading edge. Effects of blowing ratio (BR) and density ratio (DR) on the performance of cooling holes are studied here. Results show that the tripod hole clearly provides higher film cooling effectiveness than the baseline cylindrical hole case with overall reduced coolant usage on the both pressure and suction sides of the airfoil. The second part of the study focuses on evaluating the performance on the midchord suction surface. While the hole designs studied in the first part were retained as baseline cases, two additional geometries were also tested. These include cylindrical and tripod holes with shaped (SH) exits. Film cooling effectiveness was found at four different blowing ratios. Results show that the tripod holes with and without shaped exits provide much higher film effectiveness than cylindrical and slightly higher effectiveness than shaped exit holes using 50% lesser cooling air while operating at the same blowing ratios. Effectiveness values up to 0.2–0.25 are seen 40-hole diameters downstream for the tripod hole configurations, thus providing cooling in the important trailing edge portion of the airfoil.


1998 ◽  
Vol 120 (4) ◽  
pp. 777-784 ◽  
Author(s):  
F. E. Ames

A four-vane subsonic cascade was used to investigate the influence of turbulence on vane film cooling distributions. The influence of film injection on vane heat transfer distributions in the presence of high turbulence was examined in part I of this paper. Vane effectiveness distributions were documented in the presence of a low level of turbulence (1 percent) and were used to contrast results taken at a high level (12 percent) of large-scale turbulence. All data were taken at a density ratio of about 1. The three geometries chosen to study included one row and two staggered rows of downstream film cooling on both the suction and pressure surfaces as well as a showerhead array. Turbulence was found to have a moderate influence on pressure surface film cooling, particularly at the lower velocity ratios. The strong pressure gradients on the pressure surface of the vane were also found to alter film cooling distributions substantially. At lower velocity ratios, effectiveness distributions for two staggered rows of holes could be predicted well using data from one row superposed. At higher velocity ratios the two staggered rows produced significantly higher levels of effectiveness than values estimated from single row data superposed. Turbulence was also found to reduce effectiveness levels produced by showerhead film cooling substantially.


Author(s):  
Lesley M. Wright ◽  
Stephen T. McClain ◽  
Charles P. Brown ◽  
Weston V. Harmon

A novel, double hole film cooling configuration is investigated as an alternative to traditional cylindrical and fanshaped, laidback holes. This experimental investigation utilizes a Stereo-Particle Image Velocimetry (S-PIV) to quantitatively assess the ability of the proposed, double hole geometry to weaken or mitigate the counter-rotating vortices formed within the jet structure. The three-dimensional flow field measurements are combined with surface film cooling effectiveness measurements obtained using Pressure Sensitive Paint (PSP). The double hole geometry consists of two compound angle holes. The inclination of each hole is θ = 35°, and the compound angle of the holes is β = ± 45° (with the holes angled toward one another). The simple angle cylindrical and shaped holes both have an inclination angle of θ = 35°. The blowing ratio is varied from M = 0.5 to 1.5 for all three film cooling geometries while the density ratio is maintained at DR = 1.0. Time averaged velocity distributions are obtained for both the mainstream and coolant flows at five streamwise planes across the fluid domain (x/d = −4, 0, 1, 5, and 10). These transverse velocity distributions are combined with the detailed film cooling effectiveness distributions on the surface to evaluate the proposed double hole configuration (compared to the traditional hole designs). The fanshaped, laidback geometry effectively reduces the strength of the kidney-shaped vortices within the structure of the jet (over the entire range of blowing ratios considered). The three-dimensional velocity field measurements indicate the secondary flows formed from the double hole geometry strengthen in the plane perpendicular to the mainstream flow. At the exit of the double hole geometry, the streamwise momentum of the jets is reduced (compared to the single, cylindrical hole), and the geometry offers improved film cooling coverage. However, moving downstream in the steamwise direction, the two jets form a single jet, and the counter-rotating vortices are comparable to those formed within the jet from a single, cylindrical hole. These strong secondary flows lift the coolant off the surface, and the film cooling coverage offered by the double hole geometry is reduced.


Author(s):  
Kevin Liu ◽  
Shang-Feng Yang ◽  
Je-Chin Han

A detailed parametric study of film-cooling effectiveness was carried out on a turbine blade platform. The platform was cooled by purge flow from a simulated stator–rotor seal combined with discrete hole film-cooling. The cylindrical holes and laidback fan-shaped holes were accessed in terms of film-cooling effectiveness. This paper focuses on the effect of coolant-to-mainstream density ratio on platform film-cooling (DR = 1 to 2). Other fundamental parameters were also examined in this study—a fixed purge flow of 0.5%, three discrete-hole film-cooling blowing ratios between 1.0 and 2.0, and two freestream turbulence intensities of 4.2% and 10.5%. Experiments were done in a five-blade linear cascade with inlet and exit Mach number of 0.27 and 0.44, respectively. Reynolds number of the mainstream flow was 750,000 and was based on the exit velocity and chord length of the blade. The measurement technique adopted was the conduction-free pressure sensitive paint (PSP) technique. Results indicated that with the same density ratio, shaped holes present higher film-cooling effectiveness and wider film coverage than the cylindrical holes, particularly at higher blowing ratios. The optimum blowing ratio of 1.5 exists for the cylindrical holes, whereas the effectiveness for the shaped holes increases with an increase of blowing ratio. Results also indicate that the platform film-cooling effectiveness increases with density ratio but decreases with turbulence intensity.


2021 ◽  
Author(s):  
Yaomin Zhao ◽  
Richard D. Sandberg

Abstract We present the first wall-resolved high-fidelity simulations of high-pressure turbine (HPT) stages at engine-relevant conditions. A series of cases have been performed to investigate the effects of varying Reynolds numbers and inlet turbulence on the aerothermal behavior of the stage. While all of the cases have similar mean pressure distribution, the cases with higher Reynolds number show larger amplitude wall shear stress and enhanced heat fluxes around the vane and rotor blades. Moreover, higher-amplitude turbulence fluctuations at the inlet enhance heat transfer on the pressure-side and induce early transition on the suction-side of the vane, although the rotor blade boundary layers are not significantly affected. In addition to the time-averaged results, phase-lock averaged statistics are also collected to characterize the evolution of the stator wakes in the rotor passages. It is shown that the stretching and deformation of the stator wakes is dominated by the mean flow shear, and their interactions with the rotor blades can significantly intensify the heat transfer on the suction side. For the first time, the recently proposed entropy analysis has been applied to phase-lock averaged flow fields, which enables a quantitative characterization of the different mechanisms responsible for the unsteady losses of the stages. The results indicate that the losses related to the evolution of the stator wakes is mainly caused by the turbulence production, i.e. the direct interaction between the wake fluctuations and the mean flow shear through the rotor passages.


Sign in / Sign up

Export Citation Format

Share Document