High-Fidelity Simulations of a High-Pressure Turbine Stage: Effects of Reynolds Number and Inlet Turbulence

2021 ◽  
Author(s):  
Yaomin Zhao ◽  
Richard D. Sandberg

Abstract We present the first wall-resolved high-fidelity simulations of high-pressure turbine (HPT) stages at engine-relevant conditions. A series of cases have been performed to investigate the effects of varying Reynolds numbers and inlet turbulence on the aerothermal behavior of the stage. While all of the cases have similar mean pressure distribution, the cases with higher Reynolds number show larger amplitude wall shear stress and enhanced heat fluxes around the vane and rotor blades. Moreover, higher-amplitude turbulence fluctuations at the inlet enhance heat transfer on the pressure-side and induce early transition on the suction-side of the vane, although the rotor blade boundary layers are not significantly affected. In addition to the time-averaged results, phase-lock averaged statistics are also collected to characterize the evolution of the stator wakes in the rotor passages. It is shown that the stretching and deformation of the stator wakes is dominated by the mean flow shear, and their interactions with the rotor blades can significantly intensify the heat transfer on the suction side. For the first time, the recently proposed entropy analysis has been applied to phase-lock averaged flow fields, which enables a quantitative characterization of the different mechanisms responsible for the unsteady losses of the stages. The results indicate that the losses related to the evolution of the stator wakes is mainly caused by the turbulence production, i.e. the direct interaction between the wake fluctuations and the mean flow shear through the rotor passages.

1988 ◽  
Vol 110 (1) ◽  
pp. 44-50 ◽  
Author(s):  
S. P. Harasgama ◽  
W. D. Morris

This paper reports on the influence of Coriolis-induced secondary flow and centripetal buoyancy on the heat transfer within typical turbine rotor blade cooling passages. The experimental results indicate that for through-flow Reynolds numbers up to 30,000 increasing rotational speed tends to increase the mean levels of heat transfer relative to the stationary case when the flow is radially outward. This trend is reversed when the flow is radially inward. Increasing centripetal buoyancy for radially outward flow tends to decrease the mean level of heat transfer and in some cases these levels fall below the equivalent stationary values. When the flow is radially inward, increasing centripetal buoyancy generally results in an increase in mean heat transfer, and in this case increasing buoyancy tends to increase the leading (suction) side heat transfer while reducing it on the trailing (pressure) side. Original correlations proposed by Morris et al. for leading side heat transfer in a circular duct are shown to hold for triangular and square ducts when the hydraulic diameter concept is used.


1984 ◽  
Vol 106 (1) ◽  
pp. 252-257 ◽  
Author(s):  
D. E. Metzger ◽  
C. S. Fan ◽  
S. W. Haley

Modern high-performance gas turbine engines operate at high turbine inlet temperatures and require internal convection cooling of many of the components exposed to the hot gas flow. Cooling air is supplied from the engine compressor at a cost to cycle performance and a design goal is to provide necessary cooling with the minimum required cooling air flow. In conjunction with this objective, two families of pin fin array geometries which have potential for improving airfoil internal cooling performance were studied experimentally. One family utilizes pins of a circular cross section with various orientations of the array with respect to the mean flow direction. The second family utilizes pins with an oblong cross section with various pin orientations with respect to the mean flow direction. Both heat transfer and pressure loss characteristics are presented. The results indicate that the use of circular pins with array orientation between staggered and inline can in some cases increase heat transfer while decreasing pressure loss. The use of elongated pins increases heat transfer, but at a high cost of increased pressure loss. In conjunction with the present measurements, previously published results were reexamined in order to estimate the magnitude of heat transfer coefficients on the pin surfaces relative to those of the endwall surfaces. The estimate indicates that the pin surface coefficients are approximately double the endwall values.


1999 ◽  
Vol 121 (3) ◽  
pp. 558-568 ◽  
Author(s):  
M. B. Kang ◽  
A. Kohli ◽  
K. A. Thole

The leading edge region of a first-stage stator vane experiences high heat transfer rates, especially near the endwall, making it very important to get a better understanding of the formation of the leading edge vortex. In order to improve numerical predictions of the complex endwall flow, benchmark quality experimental data are required. To this purpose, this study documents the endwall heat transfer and static pressure coefficient distribution of a modern stator vane for two different exit Reynolds numbers (Reex = 6 × 105 and 1.2 × 106). In addition, laser-Doppler velocimeter measurements of all three components of the mean and fluctuating velocities are presented for a plane in the leading edge region. Results indicate that the endwall heat transfer, pressure distribution, and flowfield characteristics change with Reynolds number. The endwall pressure distributions show that lower pressure coefficients occur at higher Reynolds numbers due to secondary flows. The stronger secondary flows cause enhanced heat transfer near the trailing edge of the vane at the higher Reynolds number. On the other hand, the mean velocity, turbulent kinetic energy, and vorticity results indicate that leading edge vortex is stronger and more turbulent at the lower Reynolds number. The Reynolds number also has an effect on the location of the separation point, which moves closer to the stator vane at lower Reynolds numbers.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Yuanchao Li ◽  
Huang Chen ◽  
Joseph Katz

Modeling of turbulent flows in axial turbomachines is challenging due to the high spatial and temporal variability in the distribution of the strain rate components, especially in the tip region of rotor blades. High-resolution stereo-particle image velocimetry (SPIV) measurements performed in a refractive index-matched facility in a series of closely spaced planes provide a comprehensive database for determining all the terms in the Reynolds stress and strain rate tensors. Results are also used for calculating the turbulent kinetic energy (TKE) production rate and transport terms by mean flow and turbulence. They elucidate some but not all of the observed phenomena, such as the high anisotropy, high turbulence levels in the vicinity of the tip leakage vortex (TLV) center, and in the shear layer connecting it to the blade suction side (SS) tip corner. The applicability of popular Reynolds stress models based on eddy viscosity is also evaluated by calculating it from the ratio between stress and strain rate components. Results vary substantially, depending on which components are involved, ranging from very large positive to negative values. In some areas, e.g., in the tip gap and around the TLV, the local stresses and strain rates do not appear to be correlated at all. In terms of effect on the mean flow, for most of the tip region, the mean advection terms are much higher than the Reynolds stress spatial gradients, i.e., the flow dynamics is dominated by pressure-driven transport. However, they are of similar magnitude in the shear layer, where modeling would be particularly challenging.


Author(s):  
Knut Lehmann ◽  
Richard Thomas ◽  
Howard Hodson ◽  
Vassilis Stefanis

An experimental study has been conducted to investigate the distribution of the convective heat transfer on the shroud of a high pressure turbine blade in a large scale rotating rig. A continuous thin heater foil technique has been adapted and implemented on the turbine shroud. Thermochromic Liquid Crystals were employed for the surface temperature measurements to derive the experimental heat transfer data. The heat transfer is presented on the shroud top surfaces and the three fins. The experiments were conducted for a variety of Reynolds numbers and flow coefficients. The effects of different inter-shroud gap sizes and reduced fin tip clearance gaps were also investigated. Details of the shroud flow field were obtained using an advanced Ammonia-Diazo surface flow visualisation technique. CFD predictions are compared with the experimental data and used to aid interpretation. Contour maps of the Nusselt number reveal that regions of highest heat transfer are mostly confined to the suction side of the shroud. Peak values exceed the average by as much as 100 percent. It has been found that the interaction between leakage flow through the inter-shroud gaps and the fin tip leakage jets are responsible for this high heat transfer. The inter-shroud gap leakage flow causes a disruption of the boundary layer on the turbine shroud. Furthermore, the development of the large recirculating shroud cavity vortices is severely altered by this leakage flow.


1967 ◽  
Vol 30 (2) ◽  
pp. 337-355 ◽  
Author(s):  
Peter D. Richardson

An analysis is described for convection from a circular cylinder subjected to transverse oscillations relative to the fluid in which it is immersed. The analysis is based upon use of the acoustic streaming flow field. It is assumed that the frequency involved is sufficiently small that the acoustic wavelength in the fluid is much larger than the cylinder diameter, and that there is no externally imposed mean flow across or along the cylinder. Solutions are presented which are appropriate for a wide range of Prandtl number, and the cases of small and of large streaming Reynolds number are distinguished. The analysis compares favourably with experiments when the influence of natural convection is small.


1996 ◽  
Vol 118 (1) ◽  
pp. 23-30 ◽  
Author(s):  
C. R. Kuo ◽  
G. J. Hwang

Experiments were conducted to investigate the convective heat transfer of radially outward and inward air flows in a uniformly heated rotating square duct. The interior duct surfaces, constructed by fiberglass-reinforced plastic, were plated with separated film heaters for distinguishing the local wall heat transfer rate. The duct hydraulic diameter, the actively heated length, and the mean rotation radius are 4, 120, and 180 mm, respectively. In the experiments, the parameters were the throughflow Reynolds number, Re = 1,000∼15,000; the rotation number, Ro = 0∼0.32; and the rotational buoyancy parameter, Ra* = 0∼0.5. For the outward flow the Coriolis-induced cross-stream secondary flow strongly enhanced the heat transfer on the leading edge. But for the radially inward flow the trend was reversed. When the throughflow Reynolds number was increased, the rotating-buoyancy decreased, then increased the heat transfer for the outward flow; however, the rotating-buoyancy always increased the heat transfer for the inward flow. The heat transfer data are correlated for the outward and inward flows for the ranges of parameters under study.


Author(s):  
Davis W. Hoffman ◽  
Laura Villafañe ◽  
Christopher J. Elkins ◽  
John K. Eaton

Abstract Three-dimensional, three-component time-averaged velocity fields have been measured within a low-speed centrifugal fan with forward curved blades. The model investigated is representative of fans commonly used in automotive HVAC applications. The flow was analyzed at two Reynolds numbers for the same ratio of blade rotational speed to outlet flow velocity. The flow patterns inside the volute were found to have weak sensitivity to Reynolds number. A pair of counter-rotating vortices evolve circumferentially within the volute with positive and negative helicity in the upper and lower regions, respectively. Measurements have been further extended to capture phase-resolved flow features by synchronizing the data acquisition with the blade passing frequency. The mean flow field through each blade passage is presented including the jet-wake structure extending from the blade and the separation zone on the suction side of the blade leading edge.


2019 ◽  
Vol 865 ◽  
pp. 1085-1109 ◽  
Author(s):  
Yutaro Motoori ◽  
Susumu Goto

To understand the generation mechanism of a hierarchy of multiscale vortices in a high-Reynolds-number turbulent boundary layer, we conduct direct numerical simulations and educe the hierarchy of vortices by applying a coarse-graining method to the simulated turbulent velocity field. When the Reynolds number is high enough for the premultiplied energy spectrum of the streamwise velocity component to show the second peak and for the energy spectrum to obey the$-5/3$power law, small-scale vortices, that is, vortices sufficiently smaller than the height from the wall, in the log layer are generated predominantly by the stretching in strain-rate fields at larger scales rather than by the mean-flow stretching. In such a case, the twice-larger scale contributes most to the stretching of smaller-scale vortices. This generation mechanism of small-scale vortices is similar to the one observed in fully developed turbulence in a periodic cube and consistent with the picture of the energy cascade. On the other hand, large-scale vortices, that is, vortices as large as the height, are stretched and amplified directly by the mean flow. We show quantitative evidence of these scale-dependent generation mechanisms of vortices on the basis of numerical analyses of the scale-dependent enstrophy production rate. We also demonstrate concrete examples of the generation process of the hierarchy of multiscale vortices.


1997 ◽  
Author(s):  
M. Zagarola ◽  
A. Smits ◽  
M. Zagarola ◽  
A. Smits

Sign in / Sign up

Export Citation Format

Share Document