Analysis of Optimal Unit Numbers and Sizes for Microturbine Cogeneration Systems

Author(s):  
Satoshi Gamou ◽  
Koichi Ito ◽  
Ryohei Yokoyama

The relationships between unit numbers and capacities to be installed for microturbine cogeneration systems are analyzed from an economic viewpoint. In analyzing, an optimization approach is adopted. Namely, unit numbers and capacities are determined together with maximum contract demands of utilities such as electricity and natural gas so as to minimize the annual total cost in consideration of annual operational strategies corresponding to seasonal and hourly energy demand requirements. This optimization problem is formulated as a large-scale mixed-integer linear programming one. The suboptimal solution of this problem is obtained efficiently by solving several small-scale subproblems. Through numerical studies carried out on systems installed in hotels by changing the electrical generating/exhaust heat recovery efficiencies, the initial capital cost of the microturbine cogeneration unit and maximum energy demands as parameters, the influence of the parameters on the optimal numbers and capacities of the microturbine cogeneration units is clarified.

1994 ◽  
Vol 116 (1) ◽  
pp. 32-38 ◽  
Author(s):  
R. Yokoyama ◽  
K. Ito ◽  
Y. Matsumoto

An optimal planning method is proposed for the fundamental design of cogeneration plants. Equipment capacities and utility maximum demands are determined so as to minimize the annual total cost in consideration of the plants’ annual operational strategies for the variations of both electricity and thermal energy demands. These sizing and operational planning problems are formulated as a nonlinear programming problem and a mixed-integer linear programming problem, respectively. They are solved efficiently in consideration of their hierarchical relationship by a penalty method. A numerical example about a gas turbine plant is given to ascertain the validity and effectiveness of the proposed method.


2005 ◽  
Vol 127 (2) ◽  
pp. 389-396 ◽  
Author(s):  
Satoshi Gamou ◽  
Ryohei Yokoyama ◽  
Koichi Ito

Economic feasibility of microturbine cogeneration systems is investigated by analyzing relationships between the optimal number of microturbine units and the maximum energy demands under various conditions. For this purpose, a method to obtain the maximum energy demand at which the optimal number changes is proposed by combining a nonlinear equation problem and an optimal unit sizing problem hierarchically. Based on the proposed method, a map expressing the aforementioned relationships can be illustrated. Through numerical studies carried out on systems installed in hotels by changing the electrical generating efficiency and the capital unit cost of the microturbine cogeneration unit as parameters, the influence of the parameters on the economic feasibility of the microturbine cogeneration system is clarified.


Author(s):  
Satoshi Gamou ◽  
Koichi Ito ◽  
Ryohei Yokoyama

Economic feasibility of microturbine cogeneration systems is investigated by analyzing relationships between the optimal number of microturbine units and the maximum energy demands under various conditions. For this purpose, a method to obtain the maximum energy demand at which the optimal number changes is proposed by combining a non-linear equation problem and an optimal unit sizing problem hierarchically. Based on the proposed method, a map expressing the aforementioned relationships can be illustrated. Through numerical studies carried out on systems installed in hotels by changing the electrical generating efficiency and the capital unit cost of the microturbine cogeneration unit as parameters, the influence of the parameters on the economic feasibility of the microturbine cogeneration system is clarified.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Sara Benyakhlef ◽  
Ahmed Al Mers ◽  
Ossama Merroun ◽  
Abdelfattah Bouatem ◽  
Hamid Ajdad ◽  
...  

Reducing levelized electricity costs of concentrated solar power (CSP) plants can be of great potential in accelerating the market penetration of these sustainable technologies. Linear Fresnel reflectors (LFRs) are one of these CSP technologies that may potentially contribute to such cost reduction. However, due to very little previous research, LFRs are considered as a low efficiency technology. In this type of solar collectors, there is a variety of design approaches when it comes to optimizing such systems. The present paper aims to tackle a new research axis based on variability study of heliostat curvature as an approach for optimizing small and large-scale LFRs. Numerical investigations based on a ray tracing model have demonstrated that LFR constructors should adopt a uniform curvature for small-scale LFRs and a variable curvature per row for large-scale LFRs. Better optical performances were obtained for LFRs regarding these adopted curvature types. An optimization approach based on the use of uniform heliostat curvature for small-scale LFRs has led to a system cost reduction by means of reducing its receiver surface and height.


Author(s):  
Rui Qiu ◽  
Yongtu Liang

Abstract Currently, unmanned aerial vehicle (UAV) provides the possibility of comprehensive coverage and multi-dimensional visualization of pipeline monitoring. Encouraged by industry policy, research on UAV path planning in pipeline network inspection has emerged. The difficulties of this issue lie in strict operational requirements, variable flight missions, as well as unified optimization for UAV deployment and real-time path planning. Meanwhile, the intricate structure and large scale of the pipeline network further complicate this issue. At present, there is still room to improve the practicality and applicability of the mathematical model and solution strategy. Aiming at this problem, this paper proposes a novel two-stage optimization approach for UAV path planning in pipeline network inspection. The first stage is conventional pre-flight planning, where the requirement for optimality is higher than calculation time. Therefore, a mixed integer linear programming (MILP) model is established and solved by the commercial solver to obtain the optimal UAV number, take-off location and detailed flight path. The second stage is re-planning during the flight, taking into account frequent pipeline accidents (e.g. leaks and cracks). In this stage, the flight path must be timely rescheduled to identify specific hazardous locations. Thus, the requirement for calculation time is higher than optimality and the genetic algorithm is used for solution to satisfy the timeliness of decision-making. Finally, the proposed method is applied to the UAV inspection of a branched oil and gas transmission pipeline network with 36 nodes and the results are analyzed in detail in terms of computational performance. In the first stage, compared to manpower inspection, the total cost and time of UAV inspection is decreased by 54% and 56% respectively. In the second stage, it takes less than 1 minute to obtain a suboptimal solution, verifying the applicability and superiority of the method.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Bochen Wang ◽  
Qiyuan Qian ◽  
Zheyi Tan ◽  
Peng Zhang ◽  
Aizhi Wu ◽  
...  

This study investigates a multidepot heterogeneous vehicle routing problem for a variety of hazardous materials with risk analysis, which is a practical problem in the actual industrial field. The objective of the problem is to design a series of routes that minimize the total cost composed of transportation cost, risk cost, and overtime work cost. Comprehensive consideration of factors such as transportation costs, multiple depots, heterogeneous vehicles, risks, and multiple accident scenarios is involved in our study. The problem is defined as a mixed integer programming model. A bidirectional tuning heuristic algorithm and particle swarm optimization algorithm are developed to solve the problem of different scales of instances. Computational results are competitive such that our algorithm can obtain effective results in small-scale instances and show great efficiency in large-scale instances with 70 customers, 30 vehicles, and 3 types of hazardous materials.


Author(s):  
Satoshi Gamou ◽  
Katsuhiro Joko ◽  
Ryohei Yokoyama ◽  
Koichi Ito

Economic characteristic of micro gas turbine cogeneration systems for commercial and public purposes is evaluated rationally by an optimization method. The number of multiple kinds of micro gas turbine cogeneration units, capacities of other pieces of equipment and utility maximum contract demands are determined so as to minimize the annual total cost in consideration of operational strategies for energy demand requirements. Numerical studies are carried out on systems installed in hotels or office buildings. Through the studies, the following are clarified: (a) the relationships between the number of the installed micro gas turbine cogeneration units and the maximum electricity demands of hotels and office buildings, and (b) the economic effects of the micro gas turbine cogeneration units.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1154
Author(s):  
Chao-Chih Lin ◽  
Hund-Der Yeh

This research introduces an inverse transient-based optimization approach to automatically detect potential faults, such as leaks, partial blockages, and distributed deteriorations, within pipelines or a water distribution network (WDN). The optimization approach is named the Pipeline Examination Ordinal Symbiotic Organism Search (PEOS). A modified steady hydraulic model considering the effects of pipe aging within a system is used to determine the steady nodal heads and piping flow rates. After applying a transient excitation, the transient behaviors in the system are analyzed using the method of characteristics (MOC). A preliminary screening mechanism is adopted to sift the initial organisms (solutions) to perform better to reduce most of the unnecessary calculations caused by incorrect solutions within the PEOS framework. Further, a symbiotic organism search (SOS) imitates symbiotic relationship strategies to move organisms toward the current optimal organism and eliminate the worst ones. Two experiments on leak and blockage detection in a single pipeline that have been presented in the literature were used to verify the applicability of the proposed approach. Two hypothetical WDNs, including a small-scale and large-scale system, were considered to validate the efficiency, accuracy, and robustness of the proposed approach. The simulation results indicated that the proposed approach obtained more reliable and efficient optimal results than other algorithms did. We believe the proposed fault detection approach is a promising technique in detecting faults in field applications.


2020 ◽  
Vol 15 (3) ◽  
pp. 191-199
Author(s):  
Srijana Koirala

Increasing population and rapid development in the planet earth have resulted in increasing demand of energy sources. Developed countries have adopted renewable sources in their policy for a sustainable future but, developing countries like Nepal are still lagging behind. Petroleum gas is used by all the city dwellers which is imported from neighboring countries and is not sustainable for a long term. Rapid urban growth has brought solid waste management and energy demand as a great challenge. Production of energy through biogas can help in management of bio-degradable waste as well as fulfill energy demands. This paper highlights study of large-scale biogas plant in and outside Nepal and explains how they have helped in managing waste, fulfilling energy demands and made positive impact in the community. This paper also suggests on possibilities of biogas as an alternative energy in developing scenario of Nepal.


Author(s):  
Shu Yoshida ◽  
Satoshi Gamou ◽  
Koichi Ito ◽  
Toshinori Enokido ◽  
Ryohei Yokoyama

An optimal planning method of renewal planning for energy supply systems is proposed to determine the proper renewal year and selection as to what kind of equipment is suitable for several types of buildings from economic viewpoint. In this method, they are determined together with maximum contract demands of utilities such as electricity and natural gas so as to minimize the annual total cost in consideration of system’s annual operational strategies corresponding to seasonal and hourly energy demand requirements during every evaluation year considered. A numerical study is carried out for an office building with a total floor area of 15 000m2, where the system is consisted of an electric refrigerator and a steam boiler. Through the numerical calculation, the influence of the following items are clarified on the optimal renewing year and selection of renewing equipment of the system by the parametric study; (a) upgrading technology of the equipment in the future; (b) initial capital cost of equipment; (c) renewing construction cost and trade-in value rate; and (d) interest rate.


Sign in / Sign up

Export Citation Format

Share Document