An Optimal Renewal Planning of Energy Supply System From Economic Viewpoint

Author(s):  
Shu Yoshida ◽  
Satoshi Gamou ◽  
Koichi Ito ◽  
Toshinori Enokido ◽  
Ryohei Yokoyama

An optimal planning method of renewal planning for energy supply systems is proposed to determine the proper renewal year and selection as to what kind of equipment is suitable for several types of buildings from economic viewpoint. In this method, they are determined together with maximum contract demands of utilities such as electricity and natural gas so as to minimize the annual total cost in consideration of system’s annual operational strategies corresponding to seasonal and hourly energy demand requirements during every evaluation year considered. A numerical study is carried out for an office building with a total floor area of 15 000m2, where the system is consisted of an electric refrigerator and a steam boiler. Through the numerical calculation, the influence of the following items are clarified on the optimal renewing year and selection of renewing equipment of the system by the parametric study; (a) upgrading technology of the equipment in the future; (b) initial capital cost of equipment; (c) renewing construction cost and trade-in value rate; and (d) interest rate.

2016 ◽  
Vol 10 (8) ◽  
pp. 230
Author(s):  
Pouya Ghadimi ◽  
Seyed Smaeil Mousavi ◽  
Wen Li ◽  
Sami Kara ◽  
Bernard Kornfeld

Integrated management of manufacturing plant’s production and on-site energy supply systems has shown potential economic, environmental and resource efficiency advantages for the industry. However, existing approaches are solely based on pure mathematical models with a high degree of abstraction with limited applicability, which becomes impractical for industrial applications. In this paper a simulation methodology for production parameters selection and on-site energy supply management is presented. In this case, state-based models and operational strategies of manufacturing processes and on-site energy supply options are integrated to represent interdependency between production processes, technical building services and on-site energy supply system. As a result, the proposed methodology covers manufacturing system complexity without compromising the required accuracy. This is applied to a batch based manufacturing plant and the impact of particular production parameters on energy demand profile is evaluated. The results indicate the impact of production parameters on energy supply system. In addition, the proposed approach enables manufacturers to evaluate the implications of potential production approaches in order to select appropriate operational strategies for on-site energy supply systems.


2019 ◽  
Vol 2 (3) ◽  
pp. 164-169
Author(s):  
Mohammed Faza ◽  
Maulahikmah Galinium ◽  
Matthias Guenther

An energy supply system consists of a system of power plants and transmission anddistribution systems that supply electrical energy. The present project is limited to the modellingof the generation system. Its objective is the design and implementation of a web-basedapplication for simulating energy supply systems using the Laravel framework. The projectfocuses on six modules representing geothermal energy, solar energy, biopower, hydropower,storage, and fossil-based energy that are allocated to satisfy a given power demand. It isexecuted as a time series modelling for an exemplary year with hourly resolution. Thedevelopment of the software is divided into four steps, which are the definition of the userrequirements, the system design (activity, use case, system architecture, and ERD), the softwaredevelopment, and the software testing (unit testing, functionality testing, validity testing, anduser acceptance testing). The software is successfully implemented. All the features of thesoftware work as intended. Also, the software goes through validity testing using three differentinput data, to make sure the software is accurate. The result of the testing is 100% accuracy withrespect to the underlying model that was implemented in an excel calculation.


1994 ◽  
Vol 116 (1) ◽  
pp. 32-38 ◽  
Author(s):  
R. Yokoyama ◽  
K. Ito ◽  
Y. Matsumoto

An optimal planning method is proposed for the fundamental design of cogeneration plants. Equipment capacities and utility maximum demands are determined so as to minimize the annual total cost in consideration of the plants’ annual operational strategies for the variations of both electricity and thermal energy demands. These sizing and operational planning problems are formulated as a nonlinear programming problem and a mixed-integer linear programming problem, respectively. They are solved efficiently in consideration of their hierarchical relationship by a penalty method. A numerical example about a gas turbine plant is given to ascertain the validity and effectiveness of the proposed method.


2019 ◽  
Vol 114 ◽  
pp. 03004
Author(s):  
Elena Gubiy

We consider mathematical models for analyzing the energy supply reliability of isolated systems and propose a three-level complex of nested models. The lower level represents the model of functioning of the energy supply system during the period under review. The second level is a model of the energy supply reliability analysis. This analysis is based on multiple simulations of functioning of the energy supply system in randomly formed conditions. The energy sources demand and supply, as well as the amount of carryover reserves of energy in storage, are assumed to be random values. To simulate functioning, the values of energy demand and production are formed using the Monto-Carlo method following their laws of probability. The random value of the carryover reserves is formed using the algorithm that generates the Markov sequence of these reserves. The upper level is represented by the model for selecting the optimal composition of the means ensuring reliability, i.e. energy reserves in the energy production and storage capacity. It was revealed that the algorithm for generating the random value of the energy sources carryover reserves yields the homogenous Markov sequence. Sufficient conditions for uniqueness of the stationary state were determined. Based on the experimental calculations, we estimated the number of iterations required to reach the stationary ergodic state.


Author(s):  
Satoshi Gamou ◽  
Koichi Ito ◽  
Ryohei Yokoyama

The relationships between unit numbers and capacities to be installed for microturbine cogeneration systems are analyzed from an economic viewpoint. In analyzing, an optimization approach is adopted. Namely, unit numbers and capacities are determined together with maximum contract demands of utilities such as electricity and natural gas so as to minimize the annual total cost in consideration of annual operational strategies corresponding to seasonal and hourly energy demand requirements. This optimization problem is formulated as a large-scale mixed-integer linear programming one. The suboptimal solution of this problem is obtained efficiently by solving several small-scale subproblems. Through numerical studies carried out on systems installed in hotels by changing the electrical generating/exhaust heat recovery efficiencies, the initial capital cost of the microturbine cogeneration unit and maximum energy demands as parameters, the influence of the parameters on the optimal numbers and capacities of the microturbine cogeneration units is clarified.


2019 ◽  
Author(s):  
S. Bruche ◽  
G. Tsatsaronis

Abstract Mixed integer linear programming is frequently applied to identify promising design solutions of energy supply systems. However, application-relevant optimization models are often associated with complicating model features, e.g. numerous discrete design candidates or a large time horizon of the optimization. So, even state-of-the-art solvers may be confronted with major challenges to find satisfying solutions within reasonable time. In this paper a systematic multi-stage optimization approach is proposed that is intended to support the available algorithms in solving these complex problems. The basic idea of the approach is the distribution of the original problem into two major levels. On the first level, promising design candidates are generated using simplified optimization models. These simplifications are achieved through time series aggregation and the relaxation of operational binary variables. In the second stage, the objective values of the design candidates for the original problem are determined. The division of the problem into two stages leads to a significant reduction in required optimization time but simultaneously leads to an uncertainty regarding the quality of the found solution. Therefore, in a subsequent step, it is checked whether the objective value is within an acceptable distance from the theoretically best solution. If this is not the case, the first two steps are iteratively repeated. The proposed multi-stage approach is applied to the optimization of an energy supply system located in Germany. The results show a superior performance regarding required optimization time over conventional methods.


Author(s):  
Sergey V. Zharkov

This paper presents methods for assessing economic, resource and environmental efficiency of cogeneration plants (CPs) and energy supply systems as a whole and ways of its improvement, the main of which are the development of cogeneration and renewable energy sources (RES). The problem of allocating fuel and financial costs in the case of the combined production in accordance with the criterion of equal profitability of supplied products is solved. The methods allow determining specific indicators of supplied products which makes it possible to compare the efficiency of energy supply systems of different companies and countries, and to define their future target indicators. The technology of introducing RES-based power plants to the energy supply systems by means of using unstabilized RES-based power for direct fuel substitution at thermal power plants (the wind is viewed as the most promising type of RES). This paper can be interesting to power engineering specialists, businessmen and economists, and also participants of the upcoming United Nations Climate Change Conference aimed at achieving a universal agreement on climate, which will be held in 2015 in Paris.


Author(s):  
Sergey Zharkov

The paper presents methods for assessing economic, resource and environmental efficiency of energy supply systems and ways of its improvement, the main of which are the development of cogeneration and renewable energy sources (RES). The problem of allocating fuel and financial costs in the case of the combined production is solved. The methods allow determining specific indicators of supplied products which makes it possible to compare the efficiency of energy supply systems of different companies and countries, and to define their future target indicators. The technology of introducing RES-based power plants to the energy supply systems by means of using unstabilized RES-based power for direct fuel substitution at thermal power plants. The paper can be interesting to power engineering specialists, businessmen and economists, and also participants of the upcoming UN Climate Change Conference aimed at achieving a universal agreement on climate, which will be held in 2015 in Paris.


Sign in / Sign up

Export Citation Format

Share Document