Numerical Investigations of Geometric Design Parameters Defining Nozzle Guide Vane Endwall Heat Transfer

Author(s):  
Frank G. Rubensdo¨rffer ◽  
Torsten H. Fransson

The objective of this work is to compare the predicted flow field and the endwall heat transfer of a baseline nozzle guide vane configuration with a combustion chamber variant, a heat shield variant without and with additional cooling air, and a cavity variant without and with additional cooling air. The comparison is carried out numerically using the commercial 3D Navier-Stokes software package Fluent [1]. For the turbulence modeling the v2-f model by Durbin [2] been used. The detailed comparison of the flow field and the endwall heat transfer shows major differences between the baseline and heat shield configuration. The heat shield in front of the airfoil of the nozzle guide vane cascade influences the secondary flow field and the endwall heat transfer pattern strongly. The additional cooling air, released under the heat shield also has a distinctive influence. The cavity between the combustion chamber and the nozzle guide vane affects the secondary flow field and the endwall heat transfer pattern. Here the influence of the additional cavity cooling air is more decisive.

2013 ◽  
Vol 136 (6) ◽  
Author(s):  
C. M. Schneider ◽  
D. Schrack ◽  
M. Kuerner ◽  
M. G. Rose ◽  
S. Staudacher ◽  
...  

This paper addresses the unsteady formation of secondary flow structures inside a turbine rotor passage. The first stage of a two-stage, low-pressure turbine is investigated at a Reynolds Number of 75,000. The design represents the third and the fourth stages of an engine-representative, low-pressure turbine. The flow field inside the rotor passage is discussed in the relative frame of reference using the streamwise vorticity. A multistage unsteady Reynolds-averaged Navier–Stokes (URANS) prediction provides the time-resolved data set required. It is supported by steady and unsteady area traverse data acquired with five-hole probes and dual-film probes at rotor inlet and exit. The unsteady analysis reveals a nonclassical secondary flow field inside the rotor passage of this turbine. The secondary flow field is dominated by flow structures related to the upstream nozzle guide vane. The interaction processes at hub and casing appear to be mirror images and have characteristic forms in time and space. Distinct loss zones are identified, which are associated with vane-rotor interaction processes. The distribution of the measured isentropic stage efficiency at rotor exit is shown, which is reduced significantly by the secondary flow structures discussed. Their impacts on the steady as well as on the unsteady angle characteristics at rotor exit are presented to address the influences on the inlet conditions of the downstream nozzle guide vane. It is concluded that URANS should improve the optimization of rotor geometry and rotor loss can be controlled, to a degree, by nozzle guide vane (NGV) design.


Author(s):  
Leiyong Jiang

In order to assess the life of gas turbine critical components, it is essential to adequately specify their aero-thermodynamic working environments. Steady-state analyses of the flow field and conjugate heat transfer of an internally air-cooled nozzle guide vane (NGV) and shrouds of a gas turbine engine at the baseline operating conditions are numerically investigated. A high-fidelity CFD model is generated and the simulations are carried out with properly defined boundary conditions. The features of the complicated flow and temperature fields are revealed. In general, the Mach number is lower and the temperature is higher on the NGV pressure side than those on the suction side. There are two high temperature spots on the pressure side, and the temperature across the NGV middle section is relatively low. These findings are closely related to the locations of the holes and outlets of the cooling flow passage, and consistent with the field observation of damaged NGVs. The obtained results provide essential information for the structural, material and life analyses of the NGV/shrouds assembly, and improvement of the cooling flow arrangement.


Author(s):  
C. M. Schneider ◽  
D. Schrack ◽  
M. Kuerner ◽  
M. G. Rose ◽  
S. Staudacher ◽  
...  

This paper addresses the unsteady formation of secondary flow structures inside a turbine rotor passage. The first stage of a two-stage low pressure turbine is investigated at a Reynolds Number of 75 000. The design represents the third and the fourth stages of an engine representative low pressure turbine. The flow field inside the rotor passage is discussed in the relative frame of reference using the streamwise vorticity. A multi-stage URANS prediction provides the time-resolved data set required. It is supported by steady and unsteady area traverse data acquired with five-hole probes and dual-film probes at rotor inlet and exit. The unsteady analysis reveals a non-classical secondary flow field inside the rotor passage of this turbine. The secondary flow field is dominated by flow structures related to the upstream nozzle guide vane. The interaction processes at hub and casing appear to be mirror images and have characteristic forms in time and space. Distinct loss zones are identified which are associated with vane-rotor interaction processes. The distribution of the measured isentropic stage efficiency at rotor exit is shown which is reduced significantly by the secondary flow structures discussed. Their impacts on the steady as well as on the unsteady angle characteristics at rotor exit are presented to address the influences on the inlet conditions of the downstream nozzle guide vane.


Author(s):  
Steven W. Burd ◽  
Terrence W. Simon

The vast number of turbine cascade studies in the literature has been performed in straight-endwall, high-aspect-ratio, linear cascades. As a result, there has been little appreciation for the role of, and added complexity imposed by, reduced aspect ratios. There also has been little documentation of endwall profiling at these reduced spans. To examine the role of these factors on cascade hydrodynamics, a large-scale nozzle guide vane simulator was constructed at the Heat Transfer Laboratory of the University of Minnesota. This cascade is comprised of three airfoils between one contoured and one flat endwall. The geometries of the airfoils and endwalls, as well as the experimental conditions in the simulator, are representative of those in commercial operation. Measurements with hot-wire anemometry were taken to characterize the flow approaching the cascade. These measurements show that the flow field in this cascade is highly elliptic and influenced by pressure gradients that are established within the cascade. Exit flow field measurements with triple-sensor anemometry and pressure measurements within the cascade indicate that the acceleration imposed by endwall contouring and airfoil turning is able to suppress the size and strength of key secondary flow features. In addition, the flow field near the contoured endwall differs significantly from that adjacent to the straight endwall.


Author(s):  
Shuo Mao ◽  
Ridge A. Sibold ◽  
Stephen Lash ◽  
Wing F. Ng ◽  
Hongzhou Xu ◽  
...  

Abstract Nozzle guide vane platforms often employ complex cooling schemes to mitigate ever-increasing thermal loads on endwall. Understanding the impact of advanced cooling schemes amid the highly complex three-dimensional secondary flow is vital to engine efficiency and durability. This study analyzes and describes the effect of coolant to mainstream blowing ratio, momentum ratio and density ratio for a typical axisymmetric converging nozzle guide vane platform with an upstream doublet staggered, steep-injection, cylindrical hole jet purge cooling scheme. Nominal flow conditions were engine representative and as follows: Maexit = 0.85, Reexit/Cax = 1.5 × 106 and an inlet large-scale freestream turbulence intensity of 16%. Two blowing ratios were investigated, each corresponding to upper and lower engine extrema at M = 3.5 and 2.5, respectively. For each blowing ratio, the coolant to mainstream density ratio was varied between DR = 1.2, representing typical experimental neglect of coolant density, and DR = 1.95, representative of typical engine conditions. An optimal coolant momentum ratio between = 6.3 and 10.2 is identified for in-passage film effectiveness and net heat flux reduction, at which the coolant suppresses and overcomes secondary flows but imparts minimal turbulence and remains attached to endwall. Progression beyond this point leads to cooling effectiveness degradation and increased endwall heat flux. Endwall heat transfer does not scale well with one single parameter; increasing with increasing mass flux for the low density case but decreasing with increasing mass flux of high density coolant. From the results gathered, both coolant to mainstream density ratio and blowing ratio should be considered for accurate testing, analysis and prediction of purge jet cooling scheme performance.


1992 ◽  
Vol 114 (1) ◽  
pp. 147-154 ◽  
Author(s):  
T. Arts ◽  
M. Lambert de Rouvroit

This contribution deals with an experimental aero-thermal investigation around a highly loaded transonic turbine nozzle guide vane mounted in a linear cascade arrangement. The measurements were performed in the von Karman Institute short duration Isentropic Light Piston Compression Tube facility allowing a correct simulation of Mach and Reynolds numbers as well as of the gas to wall temperature ratio compared to the values currently observed in modern aero engines. The experimental program consisted of flow periodicity checks by means of wall static pressure measurements and Schlieren flow visualizations, blade velocity distribution measurements by means of static pressure tappings, blade convective heat transfer measurements by means of platinum thin films, downstream loss coefficient and exit flow angle determinations by using a new fast traversing mechanism, and free-stream turbulence intensity and spectrum measurements. These different measurements were performed for several combinations of the free-stream flow parameters looking at the relative effects on the aerodynamic blade performance and blade convective heat transfer of Mach number, Reynolds number, and free-stream turbulence intensity.


Author(s):  
Prasert Prapamonthon ◽  
Bo Yin ◽  
Guowei Yang ◽  
Mohan Zhang

Abstract To obtain high power and thermal efficiency, the 1st stage nozzle guide vanes of a high-pressure turbine need to operate under serious circumstances from burned gas coming out of combustors. This leads to vane suffering from effects of high thermal load, high pressure and turbulence, including flow-separated transition. Therefore, it is necessary to improve vane cooling performance under complex flow and heat transfer phenomena caused by the integration of these effects. In fact, these effects on a high-pressure turbine vane are controlled by several factors such as turbine inlet temperature, pressure ratio, turbulence intensity and length scale, vane curvature and surface roughness. Furthermore, if the vane is cooled by film cooling, hole configuration and blowing ratio are important factors too. These factors can change the aerothermal conditions of the vane operation. The present work aims to numerically predict sensitivity of cooling performances of the 1st stage nozzle guide vane under aerodynamic and thermal variations caused by three parameters i.e. pressure ratio, coolant inlet temperature and height of vane surface roughness using Computational Fluid Dynamics (CFD) with Conjugate Heat Transfer (CHT) approach. Numerical results show that the coolant inlet temperature and the vane surface roughness parameters have significant effects on the vane temperature, thereby affecting the vane cooling performances significantly and sensitively.


Sign in / Sign up

Export Citation Format

Share Document