Adiabatic Effectiveness Measurements in a First Stage Nozzle Cascade Having Endwall Contouring, Leakage and Assembly Features

Author(s):  
J. S. Piggush ◽  
T. W. Simon

The first stage vane section of a modern gas turbine engine is assembled with a gap between the combustor and the vane platform and a second gap on the platform. To prevent ingression, leakage flow is provided through each gap. In this paper, the effectiveness of the leakage flow as an endwall film coolant is measured. The cascade geometry includes axial contouring of the cooled endwall and several step configurations for each gap. The steps reflect assembly or differential thermal growth misalignment. Various blowing rates are applied through each gap to allow assessment of the changes in effectiveness with changes in leakage rate. Thus, the results presented herein show how the gaps, steps, and leakage rates alter the cooling effectiveness of the leakage flow. Shown are some cases where steps improve the film cooling effectiveness. In other cases, enhanced mixing due to gaps, steps, or increased leakage reduces effectiveness.

Author(s):  
G. J. Sturgess

The paper deals with a small but important part of the overall gas turbine engine combustion system and continues earlier published work on turbulence effects in film cooling to cover the case of film turbulence. Film cooling of the gas turbine combustor liner imposes certain geometric limitations on the coolant injection device. The impact of practical film injection geometry on the cooling is one of increased rates of film decay when compared to the performance from idealized injection geometries at similar injection conditions. It is important to combustor durability and life estimation to be able to predict accurately the performance obtainable from a given practical slot. The coolant film is modeled as three distinct regions, and the effects of injection slot geometry on the development of each region are described in terms of film turbulence intensity and initial circumferential non-uniformity of the injected coolant. The concept of the well-designed slot is introduced and film effectiveness is shown to be dependent on it. Only slots which can be described as well-designed are of interest in practical equipment design. A prediction procedure is provided for well-designed slots which describes growth of the film downstream of the first of the three film regions. Comparisons of predictions with measured data are made for several very different well-designed slots over a relatively wide range of injection conditions, and good agreement is shown.


Author(s):  
Gi Mun Kim ◽  
Soo In Lee ◽  
Jin Young Jeong ◽  
Jae Su Kwak ◽  
Seokbeom Kim ◽  
...  

Abstract In the vicinity of gas turbine blades, a complex flow field is formed due to the flow separation, reattachment, and secondary flows, and this results in a locally non-uniform and high heat transfer on the surfaces. The present study experimentally investigates the effects of leakage flow through the slot between the gas turbine vane and blade rows on the film cooling effectiveness of the forward region of the shroud ring segment. The experiment is carried out in a linear cascade with five blades. Instead of the vane, a row of rods at the location of the vane trailing edge is installed to consider the wake effect. The leakage flow is introduced through the slot between the vane and blade rows, and additional coolant air is injected from the cooling holes installed at the vane's outer zone. The effects of the slot geometry, cooling hole configuration, and blowing ratio on the film cooling effectiveness are experimentally investigated using the pressure sensitive paint (PSP) technique. CO2 gas and a mixture of SF6 and N2 (25%+75%) are used to simulate the leakage flow to the mainstream density ratios of 1.5 and 2.0, respectively. The results indicate that the area averaged film cooling effectiveness is affected more by the slot width than by the cooling hole configuration at the same injection conditions, and the lower density ratio cases show higher film cooling effectiveness than the higher density ratio case at the same cooling configuration.


1980 ◽  
Vol 102 (3) ◽  
pp. 524-534 ◽  
Author(s):  
G. J. Sturgess

The paper deals with a small but important part of the overall gas turbine engine combustion system and continues earlier published work on turbulence effects in film cooling to cover the case of film turbulence. Film cooling of the gas turbine combustor liner imposes certain geometric limitations on the coolant injection device. The impact of practical film injection geometry on the cooling is one of increased rates of film decay when compared to the performance from idealized injection geometries at similar injection conditions. It is important to combustor durability and life estimation to be able to predict accurately the performance obtainable from a given practical slot. The coolant film is modeled as three distinct regions, and the effects of injection slot geometry on the development of each region are described in terms of film turbulence intensity and initial circumferential non-uniformity of the injected coolant. The concept of the well-designed slot is introduced and film effectiveness is shown to be dependent on it. Only slots which can be described as well-designed are of interest in practical equipment design. A prediction procedure is provided for well-designed slots which describes growth of the film downstream of the first of the three film regions. Comparisons of predictions with measured data are made for several very different well-designed slots over a relatively wide range of injection conditions, and good agreement is shown.


Author(s):  
Gi Mun Kim ◽  
Soo In Lee ◽  
Jin Young Jeong ◽  
Jae Su Kwak ◽  
Seokbeom Kim ◽  
...  

Abstract In the vicinity of gas turbine blades, a complex flow field is formed due to the flow separation, reattachment, and secondary flows, and results in locally non-uniform and high heat transfer on the surfaces. In this study, the effects of leakage flow through the slot between gas turbine vane and blade rows on the film cooling effectiveness of the forward region of the shroud ring segment were experimentally investigated. The experiment was carried out in a linear cascade with five blades. Instead of vane, a row of rods at the location of the vane trailing edge was installed to consider the wake effect. The leakage flow was introduced through the slot between vane and blade rows and additional coolant air was injected from the cooling holes installed at the vane outer zone. The effects of the slot geometry, hole size, and blowing ratio on the film cooling effectiveness were experimentally investigated by using a pressure sensitive paint technique. CO2 gas and the mixture of SF6 and N2 (25%+75%) were used as leakage flow in order to simulate leakage flow to mainstream density ratios of 1.5 and 2.0, respectively. Results showed that the area averaged film cooling effectiveness was more affected by the slot width than the cooling hole size at the same blowing ratio, and the lower density ratio cases showed higher film cooling effectiveness than that of higher density ratio case at the same cooling configuration.


2021 ◽  
Author(s):  
Gi Mun Kim ◽  
Soo In Lee ◽  
Jin Young Jeong ◽  
Jae Su Kwak ◽  
Seokbeom Kim ◽  
...  

Author(s):  
Patricia Demling ◽  
David G. Bogard

The effects of obstructions on film cooling performance on a scaled-up 1st stage turbine vane will be discussed. Experimental results show that obstructions located upstream or inside of a film cooling hole will degrade adiabatic effectiveness up to 80% of the levels found with no obstructions. Downstream obstructions had little effect on performance. The location where the upstream obstructions ceased to degrade adiabatic effectiveness was determined and temperature profiles were constructed to determine how the upstream obstructions were affecting the mainstream and coolant flow.


2003 ◽  
Vol 125 (4) ◽  
pp. 648-657 ◽  
Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

Experimental investigations were performed to measure the detailed heat transfer coefficients and film cooling effectiveness on the squealer tip of a gas turbine blade in a five-bladed linear cascade. The blade was a two-dimensional model of a first stage gas turbine rotor blade with a profile of the GE-E3 aircraft gas turbine engine rotor blade. The test blade had a squealer (recessed) tip with a 4.22% recess. The blade model was equipped with a single row of film cooling holes on the pressure side near the tip region and the tip surface along the camber line. Hue detection based transient liquid crystals technique was used to measure heat transfer coefficients and film cooling effectiveness. All measurements were done for the three tip gap clearances of 1.0%, 1.5%, and 2.5% of blade span at the two blowing ratios of 1.0 and 2.0. The Reynolds number based on cascade exit velocity and axial chord length was 1.1×106 and the total turning angle of the blade was 97.9 deg. The overall pressure ratio was 1.2 and the inlet and exit Mach numbers were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7%. Results showed that the overall heat transfer coefficients increased with increasing tip gap clearance, but decreased with increasing blowing ratio. However, the overall film cooling effectiveness increased with increasing blowing ratio. Results also showed that the overall film cooling effectiveness increased but heat transfer coefficients decreased for the squealer tip when compared to the plane tip at the same tip gap clearance and blowing ratio conditions.


Author(s):  
Nafiz H. K. Chowdhury ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han ◽  
Luzeng Zhang ◽  
Hee-Koo Moon

The performance of a full coverage film cooling configuration called cross-row (CR) configuration including upstream inlet leakage flow was studied by measuring the adiabatic film cooling effectiveness distribution using PSP technique. Experiments were conducted in a blow-down wind tunnel cascade facility at the isentropic exit Mach number of 0.5 corresponding to inlet Reynolds number of 3.8 × 105, based on axial chord length. A free-stream turbulence level was generated as high as 19% with a length scale of 1.7 cm at the inlet. The results are presented as two-dimensional adiabatic film cooling effectiveness distributions on the endwall surface with corresponding spanwise averaged distributions. The focus of this study is to investigate the effect of coolant-to-mainstream mass flow ratio (MFR) and density ratio (DR) on the proposed endwall cooling design. Initially, increased MFR for the endwall cooling and upstream leakage levels up the local adiabatic cooling effectiveness and yields relatively uniform coverage on the entire endwall. However, in either case, highest MFR does not provide any improvement as endwall cooling suffered from the jet lift-off and leakage coolant coverage restricted by the downstream near-wall flow field. Results also indicated a density ratio of 1.5 provides the best performance. Finally, a fair comparison is made with another design called axial-row (AR) configuration from a companion paper.


Author(s):  
S. Ravelli ◽  
G. Barigozzi

The performance of a showerhead arrangement of film cooling in the leading edge region of a first stage nozzle guide vane was experimentally and numerically evaluated. A six-vane linear cascade was tested at an isentropic exit Mach number of Ma2s = 0.42, with a high inlet turbulence intensity level of 9%. The showerhead cooling scheme consists of four staggered rows of cylindrical holes evenly distributed around the stagnation line, angled at 45° towards the tip. The blowing ratios tested are BR = 2.0, 3.0 and 4.0. Adiabatic film cooling effectiveness distributions on the vane surface around the leading edge region were measured by means of Thermochromic Liquid Crystals technique. Since the experimental contours of adiabatic effectiveness showed that there is no periodicity across the span, the CFD calculations were conducted by simulating the whole vane. Within the RANS framework, the very widely used Realizable k-ε (Rke) and the Shear Stress Transport k-ω (SST) turbulence models were chosen for simulating the effect of the BR on the surface distribution of adiabatic effectiveness. The turbulence model which provided the most accurate steady prediction, i.e. Rke, was selected for running Detached Eddy Simulation at the intermediate value of BR = 3. Fluctuations of the local temperature were computed by DES, due to the vortex structures within the shear layers between the main flow and the coolant jets. Moreover, mixing was enhanced both in the wall-normal and spanwise direction, compared to RANS modeling. DES roughly halved the prediction error of laterally averaged film cooling effectiveness on the suction side of the leading edge. However, neither DES nor RANS provided the expected decay of effectiveness progressing downstream along the pressure side, with 15% overestimation of ηav at s/C =0.2.


Sign in / Sign up

Export Citation Format

Share Document