Time-Resolved Heat Transfer Measurements on the Tip Wall of a Ribbed Channel Using a Novel Heat Flux Sensor: Part I — Sensor and Benchmarks

Author(s):  
Tim Roediger ◽  
Helmut Knauss ◽  
Uwe Gaisbauer ◽  
Ewald Kraemer ◽  
Sean Jenkins ◽  
...  

A novel heat flux sensor was tested which allows for time-resolved heat flux measurements in internal ribbed channels related to the study of passages in gas turbine blades. The working principle of the Atomic Layer Thermopile (ALTP) sensor is based on a thermoelectric field created by a temperature gradient over an YBCO crystal (the transverse Seebeck effect). The sensors very fast frequency response allows for highly time-resolved heat flux measurements up to the 1 MHz range. This paper explains the design and working principle of the sensor, as well as the benchmarking of the sensor for several flow conditions. For internal cooling passages, this novel sensor allows for highly accurate, time-resolved measurements of heat transfer coefficients, leading to a greater understanding of the influence of fluctuations in temperature fields.

2008 ◽  
Vol 130 (1) ◽  
Author(s):  
Tim Roediger ◽  
Helmut Knauss ◽  
Uwe Gaisbauer ◽  
Ewald Kraemer ◽  
Sean Jenkins ◽  
...  

A novel heat flux sensor was tested that allows for time-resolved heat flux measurements in internal ribbed channels related to the study of passages in gas turbine blades. The working principle of the atomic layer thermopile (ALTP) sensor is based on a thermoelectric field created by a temperature gradient over an yttrium-barium-copper-oxide (YBCO) crystal (the transverse Seebeck effect). The sensors very fast frequency response allows for highly time-resolved heat flux measurements up to the 1MHz range. This paper explains the design and working principle of the sensor, as well as the benchmarking of the sensor for several flow conditions. For internal cooling passages, this novel sensor allows for highly accurate, time-resolved measurements of heat transfer coefficients, leading to a greater understanding of the influence of fluctuations in temperature fields.


Author(s):  
Sean Jenkins ◽  
Jens von Wolfersdorf ◽  
Bernhard Weigand ◽  
Tim Roediger ◽  
Helmut Knauss ◽  
...  

Measurements using a novel heat flux sensor were performed in an internal ribbed channel representing the internal cooling passages of a gas turbine blade. These measurements allowed for the characterization of heat transfer turbulence levels and unsteadiness not previously available for internal cooling channels. In the study of heat transfer, often the fluctuations can be equally as important as the mean values for understanding the heat loads in a system. In this study comparisons are made between the time-averaged values obtained using this sensor and detailed surface measurements using the transient thermal liquid crystal technique. The time-averaged heat flux sensor and transient TLC results showed very good agreement, validating both methods. Time-resolved measurements were also corroborated with hot film measurements at the wall at the location of the sensor to better clarify the influence of unsteadiness in the velocity field at the wall on fluctuations in the heat flux. These measurements resulted in turbulence intensities of the velocity and heat flux of about 20%. The velocity and heat flux integral length scales were about 60% and 35% of the channel width respectively, resulting in a turbulent Prandtl number of about 1.7 at the wall.


2008 ◽  
Vol 130 (1) ◽  
Author(s):  
Sean Jenkins ◽  
Jens von Wolfersdorf ◽  
Bernhard Weigand ◽  
Tim Roediger ◽  
Helmut Knauss ◽  
...  

Measurements using a novel heat flux sensor were performed in an internal ribbed channel representing the internal cooling passages of a gas turbine blade. These measurements allowed for the characterization of heat transfer turbulence levels and unsteadiness not previously available for internal cooling channels. In the study of heat transfer, often the fluctuations can be equally as important as the mean values for understanding the heat loads in a system. In this study, comparisons are made between the time-averaged values obtained using this sensor and detailed surface measurements using the transient thermal liquid crystal technique. The time-averaged heat flux sensor and transient TLC results showed very good agreement, validating both methods. Time-resolved measurements were also corroborated with hot film measurements at the wall at the location of the sensor to better clarify the influence of unsteadiness in the velocity field at the wall on fluctuations in the heat flux. These measurements resulted in turbulence intensities of the velocity and heat flux of 20%. The velocity and heat flux integral length scales were about 60% and 35% of the channel width, respectively, resulting in a turbulent Prandtl number of 1.7 at the wall.


Author(s):  
Arash Saidi ◽  
Jungho Kim

A technique for determining the heat transfer on the far surface of a wall based on measuring the heat transfer and temperature on the near wall is presented. Although heat transfer measurements have previously been used to augment temperature measurements in inverse heat conduction methods, the sensors used alter the heat flow through the surface, disturbing the very quantity that is desired to be measured. The ideal sensor would not alter the boundary condition that would exist were the sensor not present. The innovation of this technique in that it has minimal impact on the wall boundary condition. Since the sensor is placed on the surface of the wall, no alteration of the wall is needed. The theoretical basis for the experimental technique as well as experimental results showing the heat flux sensor performance is presented.


2009 ◽  
Vol 132 (3) ◽  
Author(s):  
David O. Hubble ◽  
Tom E. Diller

The development and evaluation of a novel hybrid method for obtaining heat flux measurements is presented. By combining the spatial and temporal temperature measurements of a heat flux sensor, the time response, accuracy, and versatility of the sensor is improved. Sensors utilizing the hybrid method are able to make heat flux measurements on both high and low conductivity materials. It is shown that changing the thermal conductivity of the backing material four orders of magnitude causes only an 11% change in sensor response. The hybrid method also increases the time response of heat flux sensors. The temporal response is shown to increase by up to a factor of 28 compared with a standard spatial sensor. The hybrid method is tested both numerically and experimentally on both high and low conductivity materials and demonstrates significant improvement compared with operating the sensor as a spatial or temporal sensor alone.


Author(s):  
A. C. Smith ◽  
A. C. Nix ◽  
T. E. Diller ◽  
W. F. Ng

This paper documents the measurement of the unsteady effects of passing shock waves on film cooling heat transfer on both the pressure and suction surfaces of first stage transonic turbine blades with leading edge showerhead film cooling. Experiments were performed for several cooling blowing ratios with an emphasis on time-resolved pressure and heat flux measurements on the pressure surface. Results without film cooling on the pressure surface demonstrated that increases in heat flux were a result of shock heating (the increase in temperature across the shock wave) rather than shock interaction with the boundary layer or film layer. Time-resolved measurements with film cooling demonstrated that the relatively strong shock wave along the suction surface appears to retard coolant ejection there and causes excess coolant to be ejected from pressure surface holes. This actually causes a decrease in heat transfer on the pressure surface during a large portion of the shock passing event. The magnitude of the decrease is almost as large as the increase in heat transfer without film cooling. The decrease in coolant ejection from the suction surface holes did not appear to have any effects on suction surface heat transfer.


Author(s):  
Sergey Z. Sapozhnikov ◽  
Vladimir Y. Mitiakov ◽  
Andrei V. Mitiakov

Author(s):  
Houssein Ammar ◽  
David Hamadi ◽  
Bertrand Garnier ◽  
Ahmed Ould El Moctar ◽  
Hassan Peerhossaini ◽  
...  

Heat-transfer analysis in microfluidic devices is of great importance in applications such as micro-heat exchangers and microreactors. This work reports on improvements in temperature measurement techniques, which can be the source of large errors due to their intrusiveness and the unreliability of conventional thermal sensors. Gold thin films were deposited on a borosilicate substrate to realize a 2D heat flux sensor for heat-transfer measurement along the main flow within microchannels. Two applications are shown, one related to micro-heat exchangers and the other to microreactors. For the micro-heat exchanger, the effect of length scale on heat transfer in a straight microchannel was investigated and the validity of macroscale correlations for convective heat transfer was checked for deionized water flowing in microchannels of heights 12 to 52 μm. For the microreactor, the reaction enthalpy of an acid–base reaction measured using the new heat-flux sensor had only a 5% discrepancy from the standard value, showing the efficiency of the new thin-film device.


Sign in / Sign up

Export Citation Format

Share Document