Blade Tip Clearance Flow and Compressor NSV: The Jet Core Feedback Theory as the Coupling Mechanism

Author(s):  
Jean Thomassin ◽  
Huu Duc Vo ◽  
Njuki W. Mureithi

This paper investigates the role of tip clearance flow in the occurrence of non-synchronous vibrations (NSV) observed in the first axial rotor of a high-speed high-pressure compressor (HPC) in an aero-engine. NSV is an aero-elastic phenomenon where the rotor blades vibrate at non-integral multiples of the shaft rotational frequencies in operating regimes where classical flutter is not known to occur. A physical mechanism to explain the NSV phenomenon is proposed based on the blade tip trailing edge impinging jet like flow, and a novel theory based on the acoustic feedback in the jet potential core. The theory suggests that the critical jet velocity, which brings a jet impinging on a rigid structure to resonance, is reduced to the velocities observed in the blade tip secondary flow when the jet impinges on a flexible structure. The feedback mechanism is then an acoustic wave traveling backward in the jet potential core, and this is experimentally demonstrated. A model is proposed to predict the critical tip speed at which NSV can occur. The model also addresses several unexplained phenomena, or missing links, which are essential to connect tip clearance flow unsteadiness to NSV. These are the pressure level, the pitch-based reduced frequency, and the observed step changes in blade vibration and mode shape. The model is verified using two different rotors that exhibited NSV.

2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Jean Thomassin ◽  
Huu Duc Vo ◽  
Njuki W. Mureithi

This paper investigates the role of tip clearance flow in the occurrence of nonsynchronous vibrations (NSVs) observed in the first axial rotor of a high-speed high-pressure compressor in an aeroengine. NSV is an aeroelastic phenomenon where the rotor blades vibrate at nonintegral multiples of the shaft rotational frequencies in operating regimes where classical flutter is not known to occur. A physical mechanism to explain the NSV phenomenon is proposed based on the blade tip trailing edge impinging jetlike flow, and a novel theory based on the acoustic feedback in the jet potential core. The theory suggests that the critical jet velocity, which brings a jet impinging on a rigid structure to resonance, is reduced to the velocities observed in the blade tip secondary flow when the jet impinges on a flexible structure. The feedback mechanism is then an acoustic wave traveling backward in the jet potential core, and this is experimentally demonstrated. A model is proposed to predict the critical tip speed at which NSV can occur. The model also addresses several unexplained phenomena, or missing links, which are essential to connect tip clearance flow unsteadiness to NSV. These are the pressure level, the pitch-based reduced frequency, and the observed step changes in blade vibration and mode shape. The model is verified using two different rotors that exhibited NSV.


Author(s):  
Daniel Möller ◽  
Maximilian Jüngst ◽  
Felix Holzinger ◽  
Christoph Brandstetter ◽  
Heinz-Peter Schiffer ◽  
...  

A flutter phenomenon was observed in a 1.5-stage configuration at the Darmstadt transonic compressor. This phenomenon is investigated numerically for different compressor speeds. The flutter occurs for the second eigenmode of the rotor blades and is caused by tip clearance flow which is able to pass through multiple rotor gaps at highly throttled operating points. The vibration pattern during flutter is accompanied by a pressure fluctuation pattern of the tip clearance flow which is interacting with the blade motion causing the aeroelastic instability. The velocity of the tip clearance flow fluctuation is about 50% of the blade tip speed for simulation and experiment and also matches the mean convective velocity inside the rotor gap. This is consistent for all compressor speeds. From this investigations, general guidelines are drawn which can be applied at an early stage during compressor design to evaluate the susceptibility to this kind of blade vibration.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Daniel Möller ◽  
Maximilian Jüngst ◽  
Felix Holzinger ◽  
Christoph Brandstetter ◽  
Heinz-Peter Schiffer ◽  
...  

This paper presents a numerical study on blade vibration for the transonic compressor rig at the Technische Universität Darmstadt (TUD), Darmstadt, Germany. The vibration was experimentally observed for the second eigenmode of the rotor blades at nonsynchronous frequencies and is simulated for two rotational speeds using a time-linearized approach. The numerical simulation results are in close agreement with the experiment in both cases. The vibration phenomenon shows similarities to flutter. Numerical simulations and comparison with the experimental observations showed that vibrations occur near the compressor stability limit due to interaction of the blade movement with a pressure fluctuation pattern originating from the tip clearance flow. The tip clearance flow pattern travels in the backward direction, seen from the rotating frame of reference, and causes a forward traveling structural vibration pattern with the same phase difference between blades. When decreasing the rotor tip gap size, the mechanism causing the vibration is alleviated.


Author(s):  
Jean Thomassin ◽  
Huu Duc Vo ◽  
Njuki W. Mureithi

Non-Synchronous Vibration (NSV) is a particular type of aero-elastic phenomenon where the rotor blades vibrate at non-integral multiples of the shaft rotational frequencies. NSV behaviour appears similar to off-design stall flutter but with a particular blade tip flow evolution. This paper demonstrates the link between NSV and the resonance induced by the tip clearance flow, based on a proposed hypothesis. At off-design operating conditions, the rotor blade tip clearance shear layer flow can evolve tangentially. It is proposed that this tangential flow becomes a support for an acoustic feedback wave that settles between rotor blades. The feedback wave is driven by the blade vibratory motion. This forms a closed loop system where the feedback wave synchronizes the shear layer vortical structures with the blade vibration frequency. Depending on the blade tip local temperature, and when the feedback wavelength matches within one or two blade pitches, the system becomes resonant and very high vibrations can occur on the blade. An axial stage compressor test rig is used to look into the underlying mechanism behind NSV. The experimental apparatus consists of the first stage of a High Pressure Compressor (HPC) driven by an electric motor. The test section is built to minimize the effects of the adjacent stator blade rows to isolate the role of rotor blade tip clearance flow on NSV. Sensitivity studies are carried out to assess the effects of the rotor blade tip clearance and inlet temperature on NSV. Finally, evidence of the staging phenomena, inherent to the proposed NSV mechanism, is experimentally obtained.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Jean Thomassin ◽  
Huu Duc Vo ◽  
Njuki W. Mureithi

Nonsynchronous vibration (NSV) is a particular type of aero-elastic phenomenon, where the rotor blades vibrate at nonintegral multiples of the shaft rotational frequencies. NSV behavior appears similar to off-design stall flutter but with a particular blade tip flow evolution. This paper demonstrates the link between NSV and the resonance induced by the tip clearance flow based on a proposed hypothesis and experimental confirmation. At off-design operating conditions, the rotor blade tip clearance shear layer flow can evolve tangentially. It is proposed that this tangential flow becomes a support for an acoustic feedback wave that settles between rotor blades. The feedback wave is driven by the blade vibratory motion and synchronizes the shear layer vortical structures with the blade vibration frequency. Depending on the blade tip local temperature, and when the feedback wavelength matches within one or two blade pitches, the system becomes resonant and very high vibrations can occur on the blade. An axial stage compressor test rig is set-up to look into the underlying mechanism behind NSV through targeted measurements using both static and rotating instrumentation. The experimental apparatus consists of the first stage of a high pressure compressor driven by an electric motor. The test-section is built to minimize the effects of the adjacent stator blade rows in order to isolate the role of rotor blade tip clearance flow on NSV. Sensitivity studies are carried out to assess and demonstrate the effects of the rotor blade tip clearance and inlet temperature on NSV and validate the predicted resonance for NSV occurrence under various conditions. Vibrations and surface pressure data from adjacent blades are collected to demonstrate the predicted interactions between neighboring rotor blades. Finally, evidence of the staging phenomenon, inherent to the proposed NSV mechanism, is experimentally obtained. All the data obtained are consistent with and thus in support of the proposed mechanism for NSV.


Author(s):  
A. Doukelis ◽  
K. Mathioudakis ◽  
K. Papailiou

The performance of a high speed annular compressor cascade for different clearance gap sizes, with stationary or rotating hub wall is investigated. Five hole probe measurements, conducted at the inlet and outlet of the cascade, are used to derive blade performance characteristics, in the form of loss and turning distributions. Characteristics are presented in the form of circumferentially mass averaged profiles, while distributions on the exit plane provide information useful to interpret the performance of the blading. Static pressure distributions on the surface of the blades as well as inside the tip clearance gap have also been measured. A set of four clearance gap sizes, in addition to zero clearance data for the stationary wall, gives the possibility to observe the dependence of performance characteristics on clearance size, and establish the influence of rotating the hub. Overall performance is related to features of the tip clearance flow. Increasing the clearance size is found to increase losses in the clearance region, while it affects the flow in the entire passage. Wall rotation is found to improve the performance of the cascade.


2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Maosheng Niu ◽  
Shusheng Zang

A numerical investigation has been performed to study the influences of cooling injection from the blade tip surface on controlling tip clearance flow in an unshrouded, high-turning axial turbine cascade. Emphasis is put on the analysis of the effectiveness of tip injection when the approaching flow is at design and off-design incidences. A total of three incidence angles are investigated, 7.4°, 0°, 0°, 0°, and 7.6°, 0° relative to the design value. The results indicate that even at the off-design incidences, tip injection can also act as an obstruction to the tip clearance flow and weaken the interaction between the passage flow and the tip clearance flow. It is also found that tip injection causes the tip clearance loss to be less sensitive to the incidences. Moreover, with injection, at all these incidences the heat transfer conditions are improved significantly on the blade tip surface in the middle and aft parts of blade. Thus, tip injection is proved to be an effective method of controlling tip clearance flow, even at off-design conditions. Beside that, an indirect empirical correlation is observed to be able to perform well in predicting the losses induced by tip clearance flow at design and off-design conditions, no matter whether air injection is active or not.


2014 ◽  
Vol 137 (4) ◽  
Author(s):  
S. Saddoughi ◽  
G. Bennett ◽  
M. Boespflug ◽  
S. L. Puterbaugh ◽  
A. R. Wadia

Blade tip losses represent a major performance penalty in low aspect ratio transonic compressors. This paper reports on the experimental evaluation of the impact of tip clearance with and without plasma actuator flow control on performance of an U.S. Air Force-designed low aspect ratio, high radius ratio single-stage transonic compressor rig. The detailed stage performance measurements without flow control at three clearance levels, classified as small, medium, and large, are presented. At design-speed, increasing the clearance from small to medium resulted in a stage peak efficiency drop of almost six points with another four point drop in efficiency with the large clearance (LC). Comparison of the speed lines at high-speed show significantly lower pressure rise with increasing tip clearance, the compressor losing 8% stall margin (SM) with medium clearance (MC) and an additional 1% with the LC. Comparison of the stage exit radial profiles of total pressure and adiabatic efficiency at both part-speed and design-speed and with throttling are presented. Tip clearance flow-control was investigated using dielectric barrier discharge (DBD) type plasma actuators. The plasma actuators were placed on the casing wall upstream of the rotor leading edge and the compressor mapped from part-speed to high-speed at three clearances with both axial and skewed configurations at six different frequency levels. The plasma actuators did not impact steady state performance. A maximum SM improvement of 4% was recorded in this test series. The LC configuration benefited the most with the plasma actuators. Increased voltage provided more SM improvement. Plasma actuator power requirements were almost halved going from continuous operation to pulsed plasma. Most of the improvement with the plasma actuators is attributed to the reduction in unsteadiness of the tip clearance vortex near-stall resulting in additional reduction in flow prior to stall.


2014 ◽  
Vol 599-601 ◽  
pp. 368-371
Author(s):  
Zhi Hui Xu ◽  
He Bin Lv ◽  
Ru Bin Zhao

Using blade tip winglet to control the tip leakage flow has been concerned in the field of turbomachinery. Computational simulation was conducted to investigate the phenomenological features of tip clearance flow. The simulation results show that suction-side winglet can reduce leakage flow intensity. The tip winglet can also decrease tip leakage mass flow and weaken tip leakage flow mixing with the mainstream and therefore reduce the total pressure loss at the blade tip.


2021 ◽  
pp. 1-80
Author(s):  
Le Han ◽  
Dasheng Wei ◽  
Yanrong Wang ◽  
Xianghua Jiang ◽  
Xiaojie Zhang

Abstract The relationship between tip clearance flow (TCF) and blade vibration in locked-in region is numerically investigated on a transonic rotor. The numerical method is verified by citing references. The phase of TCF changes with the operating condition. A separation method of the unsteady pressure caused by TCF and blade vibration is developed. The unsteady pressure during NSV is separated into the TCF and vibration components under 1B and 8th modes. The unsteady pressure of TCF is similar with that of rigid blade. The unsteady pressure of blade vibration is larger at part span, and its distribution depends on the modal shape and vibrating amplitude. The unsteady pressure of TCF and blade vibration determine the aerodynamic damping in locked-in region. The aerodynamic damping of TCF changes with the TCF phase. TCF provides positive damping at some phases and negative damping at other phases. The aerodynamic work of TCF and blade vibration increases linearly and at the rate of square with the vibrating amplitude, respectively. TCF is dominant in the initial stage of vibration. With the vibrating amplitude increasing, the aerodynamic work of vibration catches up gradually. NSV occurs when TCF provides negative damping and the unsteady pressure of vibration provides positive damping. If the work of vibration is negative, vibration will be enlarged until failure. The maximum amplitude of NSV canbe obtained by calculating the balance of work. For the 8th mode, the limit amplitude under 0ND is 0.0926%C corresponding to vibration stress of 60MPa.


Sign in / Sign up

Export Citation Format

Share Document