scholarly journals Influences of Tip Cooling Injection on Tip Clearance Control at Design and Off-Design Incidences

2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Maosheng Niu ◽  
Shusheng Zang

A numerical investigation has been performed to study the influences of cooling injection from the blade tip surface on controlling tip clearance flow in an unshrouded, high-turning axial turbine cascade. Emphasis is put on the analysis of the effectiveness of tip injection when the approaching flow is at design and off-design incidences. A total of three incidence angles are investigated, 7.4°, 0°, 0°, 0°, and 7.6°, 0° relative to the design value. The results indicate that even at the off-design incidences, tip injection can also act as an obstruction to the tip clearance flow and weaken the interaction between the passage flow and the tip clearance flow. It is also found that tip injection causes the tip clearance loss to be less sensitive to the incidences. Moreover, with injection, at all these incidences the heat transfer conditions are improved significantly on the blade tip surface in the middle and aft parts of blade. Thus, tip injection is proved to be an effective method of controlling tip clearance flow, even at off-design conditions. Beside that, an indirect empirical correlation is observed to be able to perform well in predicting the losses induced by tip clearance flow at design and off-design conditions, no matter whether air injection is active or not.

2006 ◽  
Vol 2006 ◽  
pp. 1-11 ◽  
Author(s):  
Xingen Lu ◽  
Wuli Chu ◽  
Junqiang Zhu ◽  
Zhiting Tong

Steady tip injection has been demonstrated to be an effective means of extending the stable operating range of a tip-critical compressor. This study presents a state-of-the-art design for the tip injection through the casing with flush-mounted inclined holes and the effectiveness of steady micro-air injection to enhance stability in a subsonic axial-flow compressor rotor using an external-air supply. For the tested rotor, experimental results demonstrate that at 53% design speed, the stalling mass flow can be reduced by 7.69% using an injected mass flow equivalent to 0.064% of the annulus flow. Time-dependent CFD simulations were conducted to identify the physical mechanic that accounts for the beneficial effects of the steady micro-air injection on the performance and stability of the compressor. Detailed analyses of the flow visualization at the tip have exposed the different tip flow topologies between the cases without tip injection and with tip injection. It was found that the primary stall margin enhancement afforded by the steady micro-air injection is a result of the tip-clearance flow manipulation. The repositioning of the tip-clearance vortex further towards the trailing edge of the blade passage and delaying the movement of incoming/tip-clearance flow interface to the leading edge plane are the physical mechanisms responsible for extending the compressor stall margin.


Author(s):  
Shaowen Chen ◽  
Zhihua Zhou ◽  
Tao Cui ◽  
Jinsheng Wang ◽  
Songtao Wang

Taking into account the tip leakage flow will cause the loss of a substantial increase, how to effectively control the tip clearance flow has become a current research focus. In this paper, the effects of tip injection in a low pressure turbine cascade with different injection locations, number of injection holes and mass flow rate are investigated in detail. The SST k-ω turbulence model on the basis of the Gamma-Re transition model is adopted to compute the three-dimensional flow in the cascade of a turbine cascade with tip clearance. The feasibility of a commercial computational fluid dynamic code was validated and the computed data showed a good agreement with experimental data. The effect of the tip injection locations at camber line is better than that of close to the suction side or the pressure side. The total pressure loss decreased significantly by about 22% by increasing the injection flow rate to 6g/s. The main purpose of tip injection for the control of tip clearance flow is not simple to decrease the mass flow rate of leakage flow. There needs to be a more reasonable tip injection scheme which must consider the unfavorable effects of flow blockage in the clearance, and the losses due to the mixing of injection flow with tip clearance flow and leakage flow with main flow are reduced in order to achieve the optimal effect of clearance flow control.


2010 ◽  
Vol 139-141 ◽  
pp. 2469-2472 ◽  
Author(s):  
Bing Hui Jia ◽  
Xiao Dong Zhang

The tip clearance flow of axial turbomachines is important for their aerodynamic and maneuver performance. And the tip clearance gap leakage flow is of continuing concern in reducing efficiency losses that occur within turbines. In order to gain significant reductions in emissions and specific fuel consumption as well as dramatic improvements in operating efficiency and increased service life of aero-engine, variation mechanism of blade tip clearance was analyzed and the equation of dynamic clearance was shown firstly, then the effect of rotor vibration in clearance variation which include flight loads and engine loads was studied in this paper; based on the dynamic measurements of blade tip clearance, a method that ensure tip clearance at optimal state in given mission profile through active rotor vibration control and active tip clearance control was presented. Besides, fuzzy control theory was used to solve the high nonlinear variation of tip clearance. The analysis result shows that this technique is useful.


2012 ◽  
Vol 28 (3) ◽  
pp. 504-516 ◽  
Author(s):  
Daniel K. Van Ness ◽  
Thomas C. Corke ◽  
Scott C. Morris

Author(s):  
Daniel Möller ◽  
Maximilian Jüngst ◽  
Felix Holzinger ◽  
Christoph Brandstetter ◽  
Heinz-Peter Schiffer ◽  
...  

A flutter phenomenon was observed in a 1.5-stage configuration at the Darmstadt transonic compressor. This phenomenon is investigated numerically for different compressor speeds. The flutter occurs for the second eigenmode of the rotor blades and is caused by tip clearance flow which is able to pass through multiple rotor gaps at highly throttled operating points. The vibration pattern during flutter is accompanied by a pressure fluctuation pattern of the tip clearance flow which is interacting with the blade motion causing the aeroelastic instability. The velocity of the tip clearance flow fluctuation is about 50% of the blade tip speed for simulation and experiment and also matches the mean convective velocity inside the rotor gap. This is consistent for all compressor speeds. From this investigations, general guidelines are drawn which can be applied at an early stage during compressor design to evaluate the susceptibility to this kind of blade vibration.


2007 ◽  
Vol 16 (4) ◽  
pp. 309-320 ◽  
Author(s):  
Shaojuan Geng ◽  
Hongwu Zhang ◽  
Jingyi Chen ◽  
Weiguang Huang

Author(s):  
Jean Thomassin ◽  
Huu Duc Vo ◽  
Njuki W. Mureithi

This paper investigates the role of tip clearance flow in the occurrence of non-synchronous vibrations (NSV) observed in the first axial rotor of a high-speed high-pressure compressor (HPC) in an aero-engine. NSV is an aero-elastic phenomenon where the rotor blades vibrate at non-integral multiples of the shaft rotational frequencies in operating regimes where classical flutter is not known to occur. A physical mechanism to explain the NSV phenomenon is proposed based on the blade tip trailing edge impinging jet like flow, and a novel theory based on the acoustic feedback in the jet potential core. The theory suggests that the critical jet velocity, which brings a jet impinging on a rigid structure to resonance, is reduced to the velocities observed in the blade tip secondary flow when the jet impinges on a flexible structure. The feedback mechanism is then an acoustic wave traveling backward in the jet potential core, and this is experimentally demonstrated. A model is proposed to predict the critical tip speed at which NSV can occur. The model also addresses several unexplained phenomena, or missing links, which are essential to connect tip clearance flow unsteadiness to NSV. These are the pressure level, the pitch-based reduced frequency, and the observed step changes in blade vibration and mode shape. The model is verified using two different rotors that exhibited NSV.


2014 ◽  
Vol 599-601 ◽  
pp. 368-371
Author(s):  
Zhi Hui Xu ◽  
He Bin Lv ◽  
Ru Bin Zhao

Using blade tip winglet to control the tip leakage flow has been concerned in the field of turbomachinery. Computational simulation was conducted to investigate the phenomenological features of tip clearance flow. The simulation results show that suction-side winglet can reduce leakage flow intensity. The tip winglet can also decrease tip leakage mass flow and weaken tip leakage flow mixing with the mainstream and therefore reduce the total pressure loss at the blade tip.


Sign in / Sign up

Export Citation Format

Share Document