Design and Validation of an Experiment for the Detection and Prediction of Stall and Surge in a PT6/T400 Turboshaft Engine

Author(s):  
Jennifer L. Y. Chalmers ◽  
Jeff W. Bird ◽  
Donald Gauthier

The aerospace industry is aggressively pursuing many avenues of engine health monitoring to improve aircraft safety and reduce operating cost. A PT6/T400 turboshaft engine has been instrumented specifically to determine if measurable compressor aerodynamic behavior can provide a warning of impending stall or surge, especially in a small (< 5kg/s), service-exposed, axi-centrifugal compressor. In accordance with a survey of experience and methods for stall testing and detection methods, the engine was instrumented with nine fast-response pressure transducers (monitored at 25 kHz) divided between the axial compressor first stage leading edge, the axial compressor exit, and the outlet of the centrifugal compressor diffuser. An automatic bleed valve was gradually disabled to induce compressor stall. The engine response to this gradual change corresponded to the predictions of a simple engine surge model. A technique for monitoring blade air-flow regularity was developed and used to prove that aerodynamic changes could be successfully detected before the onset of stall/surge. The new technique compared favorably to conventional time series analysis, fast Fourier transform and wavelet processing techniques. Recommendations are made for further improvements and study of test and analysis methods.

Author(s):  
Fangyuan Lou ◽  
John C. Fabian ◽  
Nicole L. Key

The inception and evolution of rotating stall in a high-speed centrifugal compressor are characterized during speed transients. Experiments were performed in the Single Stage Centrifugal Compressor (SSCC) facility at Purdue University and include speed transients from sub-idle to full speed at different throttle settings while collecting transient performance data. Results show a substantial difference in the compressor transient performance for accelerations versus decelerations. This difference is associated with the heat transfer between the flow and the hardware. The heat transfer from the hardware to the flow during the decelerations locates the compressor operating condition closer to the surge line and results in a significant reduction in surge margin during decelerations. Additionally, data were acquired from fast-response pressure transducers along the impeller shroud, in the vaneless space, and along the diffuser passages. Two different patterns of flow instabilities, including mild surge and short-length-scale rotating stall, are observed during the decelerations. The instability starts with a small pressure perturbation at the impeller leading edge and quickly develops into a single-lobe rotating stall burst. The stall cell propagates in the direction opposite of impeller rotation at approximately one third of the rotor speed. The rotating stall bursts are observed in both the impeller and diffuser, with the largest magnitudes near the diffuser throat. Furthermore, the flow instability develops into a continuous high frequency stall and remains in the fully developed stall condition.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Fangyuan Lou ◽  
John C. Fabian ◽  
Nicole L. Key

The inception and evolution of rotating stall in a high-speed centrifugal compressor are characterized during speed transients. Experiments were performed in the single stage centrifugal compressor (SSCC) facility at Purdue University and include speed transients from subidle to full speed at different throttle settings while collecting transient performance data. Results show a substantial difference in the compressor transient performance for accelerations versus decelerations. This difference is associated with the heat transfer between the flow and the hardware. The heat transfer from the hardware to the flow during the decelerations locates the compressor operating condition closer to the surge line and results in a significant reduction in surge margin during decelerations. Additionally, data were acquired from fast-response pressure transducers along the impeller shroud, in the vaneless space, and along the diffuser passages. Two different patterns of flow instabilities, including mild surge and short-length-scale rotating stall, are observed during the decelerations. The instability starts with a small pressure perturbation at the impeller leading edge (LE) and quickly develops into a single-lobe rotating stall burst. The stall cell propagates in the direction opposite of impeller rotation at approximately one-third of the rotor speed. The rotating stall bursts are observed in both the impeller and diffuser, with the largest magnitudes near the diffuser throat. Furthermore, the flow instability develops into a continuous high frequency stall and remains in the fully developed stall condition.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Mario Eck ◽  
Roland Rückert ◽  
Dieter Peitsch ◽  
Marc Lehmann

Abstract The aim of the present paper is to improve the physical understanding of discrete prestall flow disturbances developing in the tip area of the compressor rotor. For this purpose, a complementary instrumentation was used in a single-stage axial compressor. A set of pressure transducers evenly distributed along the circumference surface mounted in the casing near the rotor tip leading edges measures the time-resolved wall pressures simultaneously to an array of transducers recording the chordwise static pressures. The latter allows for plotting quasi-instantaneous casing pressure contours. Any occurring flow disturbances can be properly classified using validated frequency analysis methods applied to the data from the circumferential sensors. While leaving the flow coefficient constant, a continuously changing number of prestall flow disturbances appears to be causing a unique spectral signature, which is known from investigations on rotating instability. Any arising number of disturbances is matching a specific mode order found within this signature. While the flow coefficient is reduced, the propagation speed of prestall disturbances increases linearly, and meanwhile, the speed seems to be independent from the clearance size. Casing contour plots phase-locked to the rotor additionally provide a strong hint on prestall disturbances clearly not to be caused by a leading edge separation. Data taken beyond the stalling limit demonstrate a complex superposition of stall cells and flow disturbances, which the title “prestall disturbance” therefore does not fit to precisely any more. Different convection speeds allow the phenomena to be clearly distinguished from each other. Furthermore, statistical analysis of the pressure fluctuations caused by the prestall disturbances offer the potential to use them as a stall precursor or to quantify the deterioration of the clearance height between the rotor blade tips and the casing wall during the lifetime of an engine.


Author(s):  
Eighdi Aung ◽  
Marco P. Schoen ◽  
Jichao Li

Abstract Axial compressor systems are susceptible to unstable conditions near their optimal operating point. In particular, rotating stall and surge are conditions that need to be avoided during the operation of an axial compressor. In extreme cases these conditions may cause damage to the compressor. The onset of either condition is rather rapid, and usually does not allow for remedial control action based on the limited time available. Hence, research efforts have been focusing on the development of new detection methods that allow for more time to take corrective measures. This paper explores and compares various existing and proposed methods to identify and detect those precursors. The methods detailed in this work are tested at different operating conditions and locations. The methods investigated include the sequentially computed correlation coefficient of pressure sensor data, correlation coefficient, the Generalized Extreme Studentized Deviate Test (ESD) for outlier detection, spectral entropy, and Autoregressive (AR) models. The primary goal of evaluating these methods is based on their suitability for employment as pre-processors for dynamic system identification. By using the dynamics of the identified model rather than a static precursor, it is stipulated that the onset of stall and surge can be managed with a control concept. For this work, the extracted models are investigated for suitability to serve as precursors, and the potential as predictive models. This work may serve for future work to achieve active flow control by direct air injection at the leading edge of the blades. For this work, a one-stage compressor system with a blade geometry that allows for spike inception is utilized. Spike stall inception is a precursor to fully developed rotating stall. The subsonic compressor has 60 blades, and its operating point is controlled by a throttle and constant speed control of the rotor. The pressure data is collected with 10 Kulite™ sensors which are placed along the blade cord length on the outer casing of the compressor. The results of the tabulated performance of the various methods and resulting models indicate that an ARESD combination yields the earliest indication for spike stall inception.


Author(s):  
Erio Benvenuti

This axial compressor design was primarily focused to increase the power rating of the current Nuovo Pignone PGT10 Heavy-Duty gas turbine by 10%. In addition, the new 11-stage design favourably compares with the existing 17-stage compressor in terms of simplicity and cost. By seating the flowpath and blade geometry, the new aerodynamic design can be applied to gas turbines with different power ratings as well. The reduction in the stage number was achieved primarily through the meridional flow-path redesign. The resulting higher blade peripheral speeds achieve larger stage pressure ratios without increasing the aerodynamic loadings. Wide chord blades keep the overall length unchanged thus assuring easy integration with other existing components. The compressor performance map was extensively checked over the speed range required for two-shaft gas turbines. The prototype unit was installed on a special PGT10 gas turbine setup, that permitted the control of pressure ratio independently from the turbine matching requirements. The flowpath instrumentation included strain-gages, dynamic pressure transducers and stator vane leading edge aerodynamic probes to determine individual stage characteristics. The general blading vibratory behavior was proved fully satisfactory. With minor adjustments to the variable stator settings the front stage aerodynamic matching was optimized and the design performance was achieved.


1997 ◽  
Vol 119 (3) ◽  
pp. 634-645 ◽  
Author(s):  
B. V. Marathe ◽  
B. Lakshminarayana ◽  
D. G. Maddock

The stator flow field of an automotive torque converter is highly unsteady due to potential and viscous interactions with upstream and downstream rotors. The objective of this investigation is to understand the influence of potential and viscous interactions of the upstream rotor on the stator surface pressure field with a view toward improvement of the stator design. Five miniature fast-response pressure transducers were embedded on the stator blade. The measurements were conducted at three locations near the leading edge and two locations near the trailing edge at the midspan location. The upstream flow field was measured using a fast response five-hole probe and is described in Part I of this paper. The experimental data were processed in the frequency domain by spectrum analysis and in the temporal-spatial domain by the ensemble-averaging technique. The flow properties were resolved into mean, periodic, aperiodic, and unresolved components. The unsteady amplitudes agreed well with the pressure envelope predicted by panel methods. The aperiodic component was found to be significant due to the rotor–rotor and rotor–stator interactions observed in multistage, multispool environment.


Author(s):  
B. V. Marathe ◽  
B. Lakshminarayana ◽  
Donald G. Maddock

The stator flow field of an automotive torque converter is highly unsteady due to potential and viscous interactions with upstream and downstream rotors. The objective of this investigation is to understand the influence of potential and viscous interactions of the upstream rotor on the stator surface pressure field with a view towards improvement of the stator design. Five miniature fast-response pressure transducers were embedded on the stator blade. The measurements were conducted at three locations near the leading edge and two locations near the trailing edge at the mid-span location. Upstream flow field was measured using a fast response five-hole probe and is described in the first part of this paper. The experimental data were processed in the frequency domain by spectrum analysis and in temporal-spatial domain by the ensemble averaging technique. The flow properties were resolved into mean, periodic, aperiodic and unresolved components. The unsteady amplitudes agreed well with the pressure envelope predicted by panel methods. Aperiodic component was found to be significant due to the rotor-rotor and rotor-stator interactions observed in multistage, multi-spool environment.


Author(s):  
M. Jung ◽  
J. Eikelmann

Detailed measurements have been taken at the exit of the four stages of an axial compressor of industrial design for two operating points. Pneumatic probes and fast response pressure transducers have been used. Special attention is paid to the endwall flow near hub and casing and the stage-by-stage development of this region of high loss. The steady state investigations show the leakage flow to be the dominant feature of the endwall region near the hub. This is also apparent near the casing for the unshrouded and adjustable stator blades. At the hub this flow phenomenon intensifies axially from stage-to-stage and with increased aerodynamic loading. Variations in geometry of the radial clearance at the casing have been investigated to understand the structure and effects of the leakage flow. Unsteady state flow measurements confirm the steady state results. Further, the endwall flow and especially the leakage vortex are detected as regions of high periodic fluctuations.


Author(s):  
G. Ruck ◽  
H. Stetter

To investigate the three-dimensional unsteady flow and the turbulence intensities behind rotating blade rows of turbomachines, a procedure using a fast-response pressure probe has been developed. The integration of the cylindrical miniature pressure transducers into the probe head minimizes the risk of mechanical damage. The dynamic behaviour of the probe was analyzed. The application of the probe to the rotor exit flow of an axial compressor is described and results are presented.


Author(s):  
Kenichiro Iwakiri ◽  
Masato Furukawa ◽  
Seiichi Ibaraki ◽  
Isao Tomita

This paper presents a combined experimental and numerical analysis of rotating stall in a transonic centrifugal compressor impeller for automotive turbochargers. Stall characteristics of the compressor were examined by two high-response pressure transducers mounted on the casing wall near the impeller inlet. The pressure traces were analyzed by wavelet transforms to estimate the disturbance waves quantitatively. Three-dimensional unsteady internal flow fields were simulated numerically by Detached Eddy Simulation (DES) coupled LES-RANS approach. The analysis results show good agreements on both compressor performance characteristics and the unsteady flow features at the rotating stall. At stall inception, spiral-type breakdown of the full-blade tip leakage vortex was found out at some passages and the brokendown regions propagated against the impeller rotation. This phenomenon changed with throttling, and tornado-type separation vortex caused by the full-blade leading edge separation dominated the flow field at developed stall condition. It is similar to the flow model of short-length scale rotating stall established in an axial compressor rotor.


Sign in / Sign up

Export Citation Format

Share Document