scholarly journals Experimental Investigation of Steady and Unsteady Flow Field Downstream of an Automotive Torque Converter Turbine and Inside the Stator: Part II — Unsteady Pressure on the Stator Blade Surface

Author(s):  
B. V. Marathe ◽  
B. Lakshminarayana ◽  
Donald G. Maddock

The stator flow field of an automotive torque converter is highly unsteady due to potential and viscous interactions with upstream and downstream rotors. The objective of this investigation is to understand the influence of potential and viscous interactions of the upstream rotor on the stator surface pressure field with a view towards improvement of the stator design. Five miniature fast-response pressure transducers were embedded on the stator blade. The measurements were conducted at three locations near the leading edge and two locations near the trailing edge at the mid-span location. Upstream flow field was measured using a fast response five-hole probe and is described in the first part of this paper. The experimental data were processed in the frequency domain by spectrum analysis and in temporal-spatial domain by the ensemble averaging technique. The flow properties were resolved into mean, periodic, aperiodic and unresolved components. The unsteady amplitudes agreed well with the pressure envelope predicted by panel methods. Aperiodic component was found to be significant due to the rotor-rotor and rotor-stator interactions observed in multistage, multi-spool environment.

1997 ◽  
Vol 119 (3) ◽  
pp. 634-645 ◽  
Author(s):  
B. V. Marathe ◽  
B. Lakshminarayana ◽  
D. G. Maddock

The stator flow field of an automotive torque converter is highly unsteady due to potential and viscous interactions with upstream and downstream rotors. The objective of this investigation is to understand the influence of potential and viscous interactions of the upstream rotor on the stator surface pressure field with a view toward improvement of the stator design. Five miniature fast-response pressure transducers were embedded on the stator blade. The measurements were conducted at three locations near the leading edge and two locations near the trailing edge at the midspan location. The upstream flow field was measured using a fast response five-hole probe and is described in Part I of this paper. The experimental data were processed in the frequency domain by spectrum analysis and in the temporal-spatial domain by the ensemble-averaging technique. The flow properties were resolved into mean, periodic, aperiodic, and unresolved components. The unsteady amplitudes agreed well with the pressure envelope predicted by panel methods. The aperiodic component was found to be significant due to the rotor–rotor and rotor–stator interactions observed in multistage, multispool environment.


Author(s):  
Roland Matzgeller ◽  
Melanie Voges ◽  
Michael Schroll

Fluid injection at the tip of highly loaded compressor rotors is known to be very effective in suppressing the onset of rotating stall and eventually compressor instability. To understand the effects of tip injection, the flow field at the tip region of a transonic compressor rotor with and without fluid injection was investigated in this paper. Using results acquired by phase-locked PIV measurements as well as the static pressure field obtained by fast response pressure transducers, the unsteady interaction between the injection jet and the rotor could be described thoroughly. Both, an influence of the rotor’s flow field on the jet as well of the jet on the rotor was clearly visible. Since unsteady inflow conditions to the front rotor in the relative frame of reference were imposed by the injection jets, the rotor’s unsteady response was investigated by inspection of the position of the tip leakage vortex trajectory. It could be shown that due to a short time for the flow to adapt at the rotor’s leading edge, its position didn’t change distinctly. Because a significantly longer time was needed for the overall passage flow to adapt, it was concluded that this causes the beneficial effect of tip injection.


Author(s):  
Hao Wang ◽  
Yadong Wu ◽  
Hua Ouyang ◽  
Jie Tian ◽  
Zhaohui Du

Experimental and numerical investigations on the unsteady casing flow field in a one-and-half stage low speed axial compressor have been carried out. By using fast response pressure transducers instrumented on the rotor casing, the pressure time series were acquired at different operation points from throttle wide open to near-stall operation point. The pseudo-spatial pressure contours, phase-locked averaged and root-mean-square pressure contours and power spectrums of unsteady pressure signal have been achieved. The CFD simulations were conducted to help understanding the features of tip leakage vortex. The rotating instability has been detected throughout an operation range from small flow rate point to near stall point. The frequency characteristic of rotating instability according flow rate was discussed. Based on the pattern of RIF varying with flow rate, the developing process of rotating instability according to flow rate could be divided into two stages, referred as early-developing stage and fully-developed stage. By analyzing the correlation between rotating instability and casing flow field, it was discovered that the origination and development of rotating instability was closely related to the fluctuation induced by tip leakage vortex.


2002 ◽  
Vol 124 (3) ◽  
pp. 784-790 ◽  
Author(s):  
Jorge L. Parrondo-Gayo ◽  
Jose´ Gonza´lez-Pe´rez ◽  
Joaquı´n Ferna´ndez-Francos

An experimental investigation is presented which analyzes the unsteady pressure distribution existing in the volute of a conventional centrifugal pump with a nondimensional specific speed of 0.48, for flow-rates from 0% to 160% of the best-efficiency point. For that purpose, pressure signals were obtained at 36 different locations along the volute casing by means of fast-response pressure transducers. Particular attention was paid to the pressure fluctuations at the blade passage frequency, regarding both amplitude and phase delay relative to the motion of the blades. Also, the experimental data obtained was used to adjust the parameters of a simple acoustic model for the volute of the pump. The results clearly show the leading role played by the tongue in the impeller-volute interaction and the strong increase in the magnitude of dynamic forces and dipole-like sound generation in off-design conditions.


2005 ◽  
Vol 6 (1) ◽  
pp. 85-93 ◽  
Author(s):  
H Nakamura ◽  
I Asano ◽  
M Adachi ◽  
J Senda

The Pitot tube flowmetering technique has been used to measure pulsating flow from a vehicle engine exhaust. In general, flowmetering techniques that utilize differential pressure measurements based on Bernoulli's theory are likely to show erroneous readings when measuring an average flowrate of pulsating flow. The primary reason for this is the non-linear relationship between the differential pressure and the flowrate; i.e. the flowrate is proportional to the square root of the differential pressure. Therefore, an average of the differential pressure does not give an average of pulsating flow. In this study, fast response pressure transducers have been used to measure the pulsating pressure. Then the pulsating differential pressure is converted to the flowrate while keeping the pulsation unaveraged. An average flowrate is then calculated in the flowrate domain in order to maintain linearity before and after averaging. The peak amplitude of a pulsation measured here was about 1800 L/min at an average flowrate of 70 L/min when the engine ran at idle speed. This measurement has been confirmed by measuring the pulsation with a gas analyser. The results show a large amount of back and forth gas movement in the exhaust tube. This magnitude of pulsation can cause as much as five times higher erroneous results with the pressure domain averaging when compared to a flowrate domain averaging.


Author(s):  
Fangyuan Lou ◽  
John C. Fabian ◽  
Nicole L. Key

The inception and evolution of rotating stall in a high-speed centrifugal compressor are characterized during speed transients. Experiments were performed in the Single Stage Centrifugal Compressor (SSCC) facility at Purdue University and include speed transients from sub-idle to full speed at different throttle settings while collecting transient performance data. Results show a substantial difference in the compressor transient performance for accelerations versus decelerations. This difference is associated with the heat transfer between the flow and the hardware. The heat transfer from the hardware to the flow during the decelerations locates the compressor operating condition closer to the surge line and results in a significant reduction in surge margin during decelerations. Additionally, data were acquired from fast-response pressure transducers along the impeller shroud, in the vaneless space, and along the diffuser passages. Two different patterns of flow instabilities, including mild surge and short-length-scale rotating stall, are observed during the decelerations. The instability starts with a small pressure perturbation at the impeller leading edge and quickly develops into a single-lobe rotating stall burst. The stall cell propagates in the direction opposite of impeller rotation at approximately one third of the rotor speed. The rotating stall bursts are observed in both the impeller and diffuser, with the largest magnitudes near the diffuser throat. Furthermore, the flow instability develops into a continuous high frequency stall and remains in the fully developed stall condition.


Author(s):  
O. Schennach ◽  
R. Pecnik ◽  
B. Paradiso ◽  
E. Go¨ttlich ◽  
A. Marn ◽  
...  

The current paper presents the results of numerical and experimental clocking investigations performed in a high-pressure transonic turbine with a downstream vane row. The objective was a detailed analysis of shock and wake interactions in such a 1.5 stage machine while clocking the vanes. Therefore a transient 3D-Navier Stokes calculation was done for two clocking positions and the three dimensional results are compared with Laser-Doppler-Velocimetry measurements at midspan. Additionally the second vane was equipped with fast response pressure transducers to record the instantaneous surface pressure for 20 different clocking positions at midspan.


Author(s):  
Meera Day Towler ◽  
Tim Allison ◽  
Paul Krueger ◽  
Karl Wygant

This investigation studies fast-response pressure measurements as an indicator of the onset of surge in a single-stage centrifugal compressor. The objective is to determine an online monitoring approach for surge control that does not rely on surge margin relative to maps from predictions or factory testing. Fast-response pressure transducers are installed in the suction piping, inducer, diffuser, and discharge piping. A speed line is mapped, and high-speed pressure data are collected across the compressor map. The compressor is driven into surge several times to collect pressure data between during surge and between surge events. Following testing, these data are post-processed via filtration and statistical analyses. It is determined that, when taken together, the mean and range of the standard deviation of the time signal for multiple time steps can be used to determine whether the compressor’s operating point is approaching surge for the conditions tested.


Author(s):  
R. Amirante ◽  
L. A. Catalano ◽  
A. Dadone ◽  
V. Lombardo

The aim of this paper is to investigate the use of fast-response pressure transducers for measuring the instantaneous pressure in different sections of a common-rail diesel injection system, both for a single injection and for multiple injections. The influence of the pressure transducer onto the measured pressure is evaluated numerically by comparing the pressure history computed without the pressure transducer and that computed with the presence, and thus with the disturbance, of this sensor. A new electric circuit is proposed in substitution of the standard electronic central unit, which allows to modify the injection parameters and to perform injections on a test rig, as done in the automotive applications. Experimental results are provided both for a single injection and for multiple injections, to demonstrate the capabilities of the proposed test bench for the unijet injectors.


2018 ◽  
Vol 180 ◽  
pp. 02071
Author(s):  
Martin Němec ◽  
Tomáš Jelínek ◽  
Petr Milčák

An investigation of one and half axial turbine stage configuration was carried out in a closed-loop wind tunnel. The investigation was addressed to that impact how the previous stage outlet flow field influences the flow structures in the next stator in steam multistage turbines. The stage - stator interaction has been studied in this work. The detailed measurement with a pneumatic probes and fast response pressure probes behind the rotor and the second stator were performed to gain the useful data to analyze the impact. The detailed flow field measurement was carried out in the nominal stage regime (given by the stage isentropic Mach number 0.3 and velocity ratio u/c 0.68). The clocking effect of the stators is discussed and detailed unsteady flow analysis is shown.


Sign in / Sign up

Export Citation Format

Share Document