Cyclic Carbonation and Calcination Studies of Limestone and Dolomite for CO2 Separation From Combustion Flue Gases

Author(s):  
Sivalingam Senthoorselvan ◽  
Stephan Gleis ◽  
Spliethoff Hartmut ◽  
Patrik Yrjas ◽  
Mikko Hupa

Naturally occurring limestone and dolomite samples, originating from different geographical locations, were tested as potential sorbents for carbonation/calcination based CO2 capture from combustion flue gases. Samples have been studied in a thermo gravimetric analyzer under a simulated flue gas conditions at three calcination temperatures, viz., 750°C, 875°C and 930°C for four Carbonation Calcination Reaction (CCR) cycles. The dolomite sample exhibited the highest rate of carbonation than the tested limestones. At 3rd cycle, its CO2 capture capacity per kg of sample was nearly equal to that of Gotland, the highest reacting limestone tested. At 4th cycle it surpassed Gotland, despite the fact that the CaCO3 content of Sibbo dolomite was only 2/3 of Gotland. Decay coefficients were calculated by a curve fitting exercise and its value is lowest for Sibbo dolomite. That means, most probably its capture capacity per kg of sample would remain higher, well beyond the 4th cycle. There was a strong correlation between the calcination temperature, specific surface area of the calcined samples and degree of carbonation. It was observed that higher the calcination temperature lower the sorbent reactivity. The BET measurements and SEM images provided quantitative and qualitative evidences to prove this. For a given limestone/dolomite sample, sorbent’s CO2 capture capacity was depend on the number of CCR cycles and the calcination temperature. In a CCR loop, if the sorbent is utilized only for a certain small number of cycles (<20), the CO2 capture capacity could be increased by lowering the calcination temperature. According to the equilibrium thermodynamics, the CO2 partial pressure in the calciner should be lowered to lower the calcination temperature. This can be achieved by additional steam supply into the calciner. Steam could then be condensed in an external condenser to single out the CO2 stream from the exit gas mixture of the calciner. A calciner design based on this concept is illustrated.

Author(s):  
Sivalingam Senthoorselvan ◽  
Stephan Gleis ◽  
Spliethoff Hartmut ◽  
Patrik Yrjas ◽  
Mikko Hupa

Naturally occurring limestone and dolomite samples, originating from different geographical locations, were tested as potential sorbents for carbonation/calcination based CO2 capture from combustion flue gases. Samples have been studied in a thermogravimetric analyzer under simulated flue gas conditions at three calcination temperatures, viz., 750°C, 875°C, and 930°C for four carbonation calcination reaction (CCR) cycles. The dolomite sample exhibited the highest rate of carbonation than the tested limestones. At the third cycle, its CO2 capture capacity per kilogram of the sample was nearly equal to that of Gotland, the highest reacting limestone tested. At the fourth cycle it surpassed Gotland, despite the fact that the CaCO3 content of the Sibbo dolomite was only 2/3 of that of the Gotland. Decay coefficients were calculated by a curve fitting exercise and its value is lowest for the Sibbo dolomite. That means, most probably its capture capacity per kilogram of the sample would remain higher, well beyond the fourth cycle. There was a strong correlation between the calcination temperature, the specific surface area of the calcined samples, and the degree of carbonation. It was observed that the higher the calcination temperature, the lower the sorbent reactivity. The Brunauer–Emmett–Teller measurements and scanning electron microscope images provided quantitative and qualitative evidences to prove this. For a given limestone/dolomite sample, sorbent’s CO2 capture capacity depended on the number of CCR cycles and the calcination temperature. In a CCR loop, if the sorbent is utilized only for a certain small number of cycles (<20), the CO2 capture capacity could be increased by lowering the calcination temperature. According to the equilibrium thermodynamics, the CO2 partial pressure in the calciner should be lowered to lower the calcination temperature. This can be achieved by additional steam supply into the calciner. Steam could then be condensed in an external condenser to single out the CO2 stream from the exit gas mixture of the calciner. A calciner design based on this concept is illustrated.


2012 ◽  
Vol 55 ◽  
pp. 18-26 ◽  
Author(s):  
Qiang Wang ◽  
Hui Huang Tay ◽  
Zhanhu Guo ◽  
Luwei Chen ◽  
Yan Liu ◽  
...  

2016 ◽  
Vol 4 (3) ◽  
pp. 1439-1445 ◽  
Author(s):  
Jie Chen ◽  
Jie Yang ◽  
Gengshen Hu ◽  
Xin Hu ◽  
Zhiming Li ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2220 ◽  
Author(s):  
Szu-Chen Wu ◽  
Po-Hsueh Chang ◽  
Chieh-Yen Lin ◽  
Cheng-Hsiung Peng

In this study, Ca-based multi-metals metal-organic framework (CaMgAl-MOF) has been designed as precursor material for carbon dioxide (CO2) capture to enhance the CO2 capture capacity and stability during multiple carbonation-calcination cycles. The CaMgAl-MOFs were constructed from self-assembly of metal ions and organic ligands through hydrothermal process to make metal ions uniformly distributed through the whole structure. Upon heat treatment at 600 °C, the Ca-based multi-metals CaMgAl-MOF would gradually transform to CaO and MgO nanoparticles along with the amorphous aluminum oxide distributed in the CaO matrix. XRD, Fourier transform infrared (FTIR), and SEM were used to identify the structure and characterize the morphology. The CO2 capture capacity and multiple carbonation-calcination cyclic tests of calcined Ca-based metal-organic framework (MOF) (attached with O and indicated as Ca-MOF-O) were performed by thermal gravimetric analysis (TGA). The single metal component calcined Ca-MOF sorbent have the highest CO2 capture capacity up to 72 wt.%, but a lower stability of 61% due to severe particle aggregation. In contrast, a higher Ca-rich MOF oxide sorbent with tailoring the Mg/Al ratios, Ca0.97Mg0.025Al0.005-MOF-O, showed the best performance, not only having the high stability of ~97%, but also maintaining the highest capacity of 71 wt.%. The concept of using Ca-based MOF materials combined with mixed-metal ions for CO2 capture showed a potential route for achieving efficient multiple carbonation-calcination CO2 cycles.


RSC Advances ◽  
2014 ◽  
Vol 4 (99) ◽  
pp. 55877-55883 ◽  
Author(s):  
F. Akhtar ◽  
N. Keshavarzi ◽  
D. Shakarova ◽  
O. Cheung ◽  
N. Hedin ◽  
...  

Monoliths of microporous aluminophosphates (AlPO4-17 and AlPO4-53) were structured by binder-free pulsed current processing.


2013 ◽  
Vol 17 ◽  
pp. 423-430 ◽  
Author(s):  
Kali-Stella Zoannou ◽  
Devin J. Sapsford ◽  
Anthony J. Griffiths

Sign in / Sign up

Export Citation Format

Share Document